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Abstract

This paper examines how climate change will affect food prices across regions and people across the
income distribution, emphasizing the uneven effects on agricultural productivity. As climate change
shifts comparative advantages in food production, trade frictions limit adaptive sourcing. These fric-
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everywhere. Low-income households, with higher food expenditure shares, are particularly vulnera-
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welfare losses stemming from climate change into food expenditure shares, trade shares, and produc-
tivity changes. Using Brazilian data, we estimate intra-national trade shares using short-term weather
shocks, price changes, and driving times between states. We find that trade frictions for fresh food are
twice as sensitive to driving time relative to commodities, which face lower trade costs. Counterfactu-
als based on productivity forecasts indicate substantial welfare losses, with the lowest income decile
in the most affected states willing to forgo 3% of income to avoid projected productivity declines. Im-
proving road infrastructure could mitigate these effects, with low-income households in some states
willing to pay up to 0.8% of their income for a 10% increase in the average driving speed.
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1 Introduction

Climate change is expected to reshape the spatial patterns of agricultural productivity. One adaptive

strategy involves leveraging novel comparative advantages through the re-optimization of food

sourcing. Nevertheless, due to the high costs associated with transporting goods over distances,

trade barriers restrict the degree to which this process can happen. For items that incur substantial

transportation costs, the significance of local productivity becomes paramount. With the rise in

food prices, the welfare implications are not uniformly distributed across various income levels, as

lower-income households usually spend a higher proportion of their budget on food.

What effects will climate change have on food prices and how will it influence individuals

across various income levels? To address this question, we develop a spatial model of food pro-

duction and trade, building on Eaton and Kortum (2002) and Costinot et al. (2016). Our model

incorporates rich heterogeneity in four dimensions. First, to examine the importance of trade ease,

we distinguish between two types of food goods, each facing different trade costs. Second, loca-

tions vary in productivity for each type of food. Third, locations are distinct regarding their degree

of connectedness to others. Fourth, income levels within each location vary, with both relatively

richer and poorer households.

In our model, locations produce goods based on their productivity and engage in trade. Food

goods face varying trade costs, which distort the comparative advantages of locations and influence

trade patterns. Goods with higher trade costs exhibit a greater spatial price dispersion compared to

those with lower trade costs. For high-trade-cost goods, local productivity is especially critical, as

lower productivity leads to higher prices.

We calculate the welfare effects stemming from changes in food prices. In our setting, shifts in

utility caused by climate change are driven solely by changes in food prices, as household income

is constant. We decompose the equivalent variation from climate change into three components,

drawing on standard demand theory. The first is the food expenditure share: poorer households,

with higher food expenditure shares, are more sensitive to changes in food prices. The second is

the trade shares between locations, which reflect how regions are affected by productivity changes

in other regions they trade with, including themselves. The third component captures changes in

potential food productivity across different areas.
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We apply the model to Brazil, treating each state as a separate location. Given Brazil’s vast

latitude range and tropical climate, there are significant productivity differences across regions and

crops. The country’s extensive land coverage and reliance on road-based transportation make the

movement of goods challenging. Additionally, income inequality is pronounced both within and

across states.

Trade flows and frictions are central to our model, but not directly observed in the data. This

is a frequently encountered issue in domestic trade is the necessity for comprehensive information

on trade flows among sub-national units, hardly observed in the data. As in many studies of intra-

national trade, e.g, Ramondo et al. (2016), Pellegrina (2022), Sotelo (2020), the trade flows are

not directly observable in data between Brazilian states1. To overcome this data constraint, we

incorporate the model structure with the inclusion of short-term weather variances, allowing us to

derive a correlation between price fluctuations and weather anomalies, both quantifiable in the data.

We then employ this observed variation in prices and weather disturbances to extract estimates of

these trade barriers for different types of food goods.

In our model, heat shocks reduce food productivity, driving up prices. Neighboring states are

also affected, as they import food from the impacted state. Thus, the observed price change in

any state reflects a weighted average of heat shocks between states, with the weights determined

by trade shares. These shares depend on average potential productivity, labor costs, and bilateral

trade frictions. To capture this structure, we combine a panel of Consumer Price Index (CPI) data

with a panel of heat shocks. Drawing from crop science literature, e.g. Schlenker and Roberts,

2009, we focus on a temperature threshold of 300C/860F, known to harm crop yields. Using

satellite weather data Copernicus Climate Change Service (2019), we construct a panel tracking

the number of hours (in days) that temperatures exceeded this threshold in each city. We leverage

these heat shocks to estimate trade frictions from variations in prices and temperatures and validate

the threshold by showing evidence of yield declines when crops are exposed to such temperatures

during the growing season.

To the extent that most cargo transportation within Brazil rely on trucks via roads (World

1This feature is common across most countries. Canada is a noticeable exception, which releases interprovincial
trade flows. See, e.g., Agnosteva et al. (2014)
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Bank, 2022), we model trade frictions as a function of driving time between states2. We build on

a classification of food goods’ tradability developed by the Brazilian Central Bank for tracking the

CPI. Using this classification, we compute the price index for baskets of food products, in a panel

of locations. One index includes goods that are frequently traded on the international market, such

as commodities, while the other represents items that are less commonly traded globally, typically

more perishable, fresh goods. We separately estimate the elasticity of trade costs with respect to

the driving time for each basket. Our findings suggest that this elasticity is nearly double for goods

with elevated trade costs, such as fresh goods, compared to those with reduced trade costs, such as

commodities.

We examine how the spatial correlation of heat and price changes shape our results. While heat

shocks naturally show positive spatial correlation, we document that a similar pattern for inflation

dynamics across locations. Specifically, as driving time between locations increases, making them

less connected, the inflation correlation decreases, especially for goods with higher trade costs. Our

model capture this feature of the data: locations farther apart experience different heat shocks, and

substantial trade frictions make local prices more dependent on nearby conditions. Thus, inflation

correlations decline more sharply for high-trade-cost goods, with a more modest decline observed

for low-trade-cost goods.

With these estimates of trade frictions and trade shares, we proceed to do counterfactual exer-

cises. Actual production data often suffers from selection bias in Ricardian models, as locations

tend to produce goods where they have a comparative advantage. Hence, the productivity across

the spectrum of goods is latent: in the actual production data, we observe only partially these

productivities. To address this, we use the potential productivity of crops across regions for each

type of food good. Following our equivalent variation decomposition, we incorporate proportional

changes in average potential productivity into the model. These estimates are sourced from the

GAEZ project by FAO and IIASA (2022), based on various climate change scenarios.

The GAEZ project also provides data on the historical levels of this potential productivity. We

employ this historical data for two reasons. First, it serves as an input to recover trade frictions.

Second, it provides a benchmark to compare with alternative productivity forecasts from the GAEZ

project. In our equivalent variation decomposition, changes in average potential productivity are
2World Bank (2022) shows data for 2021, with the estimated share of cargo transported by road is 66%. Railroads

correspond to 18% and waterways other 15%.
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central, making historical estimates a crucial basis for comparison.

The GAEZ project provides detailed data on agricultural productivity under various climate

change scenarios, covering different time horizons and intensities of productivity shifts linked to

greenhouse gas concentrations. Given the higher uncertainty over longer horizons, we focus our

results using the optimistic scenario (RCP 2.6) for the period ending in 20403.

We show that even under the most optimistic climate change scenario, there is significant varia-

tion in potential productivity changes across states compared to historical baselines. Furthermore,

there is substantial heterogeneity in the effect of climate change on productivity between food

types, with high-trade-cost foods experiencing more pronounced declines in average potential pro-

ductivity.

Using our equivalent variation analysis, we estimate how much households would be willing to

pay to avoid the productivity changes linked to climate change. While food prices are an aggregate

at the state level, within-state income heterogeneity leads to differentiated welfare effects of price

increases. Due to non-homothetic preferences, food expenditure shares decline with income, con-

sistent with observed data. Households in the lowest income decile are more vulnerable to changes

in food prices, as they allocate a larger share of their income to food4. Under the optimistic sce-

nario, households in the first income decile in some states would be willing to forgo up to 3% of

their income to avoid these productivity shifts.

Finally, we argue that an effective adaptation strategy is to improve road quality. Since trade

frictions are modeled as a function of driving time between states, increasing average road speed

effectively reduces trade barriers. We derive a formula for the equivalent variation under this

scenario, involving three components similar to the productivity change decomposition: food ex-

penditure shares, trade shares between states, and the estimated elasticity of trade frictions with

respect to driving time. We find that, given these elasticities, the sufficient statistic for the equiv-

alent variation is the own trade share of each state, linking to findings from the international trade

literature, (Arkolakis et al., 2012). For a 10% improvement in road quality, households in the low-

est income decile would be willing to pay up to 0.8% of their income under the optimistic scenario.

3The GAEZ data employs four Representative Concentration Pathways (RCPs): 2.6, 4.5, 6.0, and 8.5 to construct
scenarios. These values represent radiative forcing levels by 2100, reflecting greenhouse gas concentrations, with
lower values indicating cooler temperatures and stricter mitigation policies.

4We show this pattern in figure 2.
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Related Literature. Our paper intersects several branches of the literature. A central component

of our analysis is the recovery of trade cost estimates, given the lack of detailed intra-national trade

flow data. There is a growing body of work focused on identifying and measuring intra-national

trade costs. Atkin and Donaldson (2015) summarizes the main challenges of the task. Some

papers infer and bound trade costs using observed price differentials across locations, leveraging

their model structures(Allen and Atkin, 2022; Donaldson and Hornbeck, 2016). Others papers

(Donaldson, 2018), Asturias et al. (2019)) rely on the price differentials of some good produced by

a monopolist or single factory to estimate trade costs, relating this dispersion to distance.

Sotelo (2020) uses price dispersion in coffee markets in Peru, together with road quality data,

to measure trade frictions. Similarly to Donaldson (2018), the author assumes that trade friction

is the same for all crops, depending only on the distance from the road. Focusing on Brazil,

Pellegrina (2022) uses deviations in farm gate prices to estimate trade elasticities and the elasticity

of trade costs with respect to driving time between locations. A related finding in this study is that

the elasticity is twice as large for perishables relative to non-perishables, a result similar to ours,

although we find a higher magnitude. Since we do not observe price levels, only changes in prices,

we take a different approach to estimating trade frictions by using weather variability as a means

to recover these estimates. Exploiting this link between weather shocks and prices changes is one

of our contributions.

Our paper also contributes to the literature on the pass-through of shocks to prices. Auer et al.

(2022) investigates the pass-through of the Swiss Franc’s appreciation to consumer prices, while

Fitzgerald (2008) examines how trade costs affect the pass-through from exchange rate movements

to consumer prices. Faccia et al. (2021) uses a cross-country panel to assess the price dynamics of

different consumption baskets after extreme weather events, such as sweltering summers or cold

winters. We add to this literature by documenting increases in the local food prices following

exposure to high temperatures, relying on detailed, disaggregate data for the temperatures.

We are also related to the literature on the economic effects of transitory weather shocks. So-

manathan et al. (2021) documents declines in productivity and changes in labor supply in Indian

factories exposed to high temperatures. Castro-Vincenzi et al. (2024) shows how firms diversify

their sourcing across regions to mitigate the risk of floods in India. Oni (2024) investigates energy

price variability and its disproportionate effects on low-income households’ expenditure, studying
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the distributional impact of energy price shocks. In Barbosa-Alves and Britos (2023), we studied

how migration flows from rural Guatemala to the US are affected by local temperature shocks.

Similar to our approach here, we use short-run fluctuations in temperature to inform about some

frictions in the economy. We contribute to this literature by showing the usefulness of these tran-

sitory productivity shocks in the context of trade.

The growing literature on the economic impacts of climate change and potential mitigation and

adaptation mechanisms is also relevant to our study. Costinot et al. (2016) analyzes agricultural

adaptation to climate change on a global scale using an earlier version of the GAEZ data. Bilal and

Känzig (2024) documents significant declines in global economic activity following a temperature

shock. Bilal and Rossi-Hansberg (2023) incorporates a migration model to evaluate the impacts of

climate change, utilizing damage assessments from natural events like storms and heatwaves. Cruz

and Rossi-Hansberg (2024) estimates productivity and amenity losses due to rising temperatures,

predicting welfare costs of up to 20% in Africa and Latin America. Our approach complements

this literature by focusing on the intra-national level in Brazil, highlighting the role of food goods’

tradability.

Our paper also examines the distributional effects of productivity changes. Fajgelbaum and

Khandelwal (2016) measures unequal gains from trade based on variations in expenditure shares

across the income distribution. The first-order approach employed in their study is also used in the

counterfactual analysis by Costinot et al. (2016). Adao et al. (2017) develops a methodology

for counterfactual analysis in trade models based on this first-order approach. We extend the

discussion in Costinot et al. (2016) by focusing on the the heterogeneity of the expenditure shares

and good (or type of) specific trade frictions at the intranational.

Outline. The remainder of the paper is organized as follows. Section 2 presents the trade com-

ponent of the model. Section 3 derives a welfare change formula to highlight key elements for

the counterfactual exercises. Section 4 introduces a perturbation to recover missing trade shares.

Section 5 develops the demand side, specifying preferences and parameter calibration. Section

6 presents results from the counterfactuals, including the policy scenario on road infrastructure.

Section 7 discuss limitations and potential extensions. The final section summarizes the findings.

6



2 Model

We develop a spatial model of food production and trade, incorporating heterogeneity along four

dimensions: the tradability of different types of food, the productivity of each location for each

food type, the degree of connectedness between locations, and income heterogeneity within each

location.

The model includes three productive sectors: one referred to as the outside good sector, and

two sectors producing different types of food, distinguished primarily by their degree of tradability.

We classify the food sectors into two groups: one facing low trade costs and the other facing high

trade costs. Each location is endowed with a distribution of potential productivities for goods of

each type of food, and the outside good. Within each location, a population of households resides

and supplies labor inelastically. These households do not migrate, and differ in their effective labor

hours, generating income heterogeneity within each location.

Our approach proceeds as follows. First, we present the model without considering any shocks

— either transitory shocks from weather or “permanent” shocks from climate change. As we de-

velop the theoretical framework, we identify key missing data necessary for estimating the model,

most notably detailed information on trade flows. We then introduce a transitory weather shock

into the model and derive the link between price movements and the realization of these transitory

shocks. This relationship is used to estimate trade frictions and recover trade shares. Finally, we

discuss the sources of exogenous variation that underpin the counterfactual analysis.

2.1 The Trade Block

Our environment is static and there is no storage technology available. There are L locations,

indexed by ℓ in the set L ” t1,2, . . . ,Lu. A mass of households Λℓ lives in location ℓ. Locations

are endowed with productivity parameters, described momentarily.

Sectors, Goods, and Market Structure. There are three sectors: one producing an outside good,

indexed by o, and sectors producing two types of food goods. One type faces low trade costs

between regions, denoted by c, and another faces high trade costs, denoted by q. One might fix

ideas by thinking of goods of type c as easily traded commodities, such as rice, soybean, corn, and

7



wheat, and think of goods indexed q as harder to trade or more perishables, such as tomatoes and

lettuce. We denote x P X ” tc,qu to ease the notation later. For each food type x, there is a unitary

mass of goods, each indexed by ω P r0,1s. We call a variety a pair of type and good px,ωq. In all

that follows, we assume all markets are perfectly competitive so that prices are pinned down by

the marginal production costs, on top of any transportation costs.

Transportation Costs. We model trade frictions as iceberg costs, and let the outside good o be

traded without friction. As a result, the price of the outside good is the same across locations and,

therefore, is well suited to serve as the numeraire.

For food products, all varieties of a given type x face a trade cost τxj,ℓ for the location pairs

pj, ℓq and the good type x P tc,qu. As usual, the interpretation of τxj,ℓ is that a sourcing location ℓ

needs ship τxj,ℓ units of a variety px,ωq so that the location j receives one unit.

We normalize τxℓ,ℓ “ 1 for all locations ℓ and types x. Whenever j ‰ ℓ, we require that τxj,ℓ ě 1.

We further require that the triangle inequality be satisfied: for any triplet of locations pj,k,ℓq, the

following τxj,ℓ ď τxj,kτ
x
k,ℓ, so that there is no arbitrage opportunities in moving the goods around.

Variety Aggregation. Varieties are aggregated by type x with a CES function5. For each type of

food, there is a unitary mass of varieties, which we denote by ω:

ccℓ “

ˆ
ż 1

0
ccℓpωq

νc´1
νc dω

˙

νc

νc´1

and c
q
ℓ “

ˆ
ż 1

0
c
q
ℓ pωq

νq´1
νq dω

˙

νq

νq´1

(1)

where cxℓ pωq denotes the consumption of variety px,ωq in location ℓ. The CES structure delivers

the ideal price indexes for each type of food as follows:

P cℓ “

ˆ
ż 1

0
pcℓpωq

1´νcdω

˙

1
1´νc

and P
q
ℓ “

ˆ
ż 1

0
p
q
ℓ pωq

1´νqdω

˙

1
1´νq

(2)

Our trade structure can be solved independently from the preference block, provided that this CES

structure is imposed. Hence, we proceed with a general formulation and later specialize on the

outer utility function.

5One alternative interpretation is that in each location there is a mass of competitive grocery shops that aggregate
all varieties px,ωq of each type x into a composite that the households buy by means of a CES production function.
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Production. There is a single production factor, labor. Production is linear in labor in all sectors.

The productivity on the outside good sector at location ℓ P L is given by Zoℓ , so its inverse denotes

the input requirement to produce a unit of output:

Y oℓ “ ZoℓN
o
ℓ (3)

where N o
ℓ is the amount of labor allocated to such production. Letting wℓ denote the wage rate

prevailing at the location ℓ. The cost of producing one unity of the outside good is given

wℓ
Zoℓ

(4)

For the food goods, we model their production following Eaton and Kortum (2002) model. We

denote by Zxℓ pωq the efficiency of location ℓ in producing the variety ω of food type x P tc,qu.

The production technology takes the form of

Y xℓ pωq “ Zxℓ pωqN x
ℓ pωq (5)

so that the cost per unit for producing good variety px,ωq at location ℓ is given by

wℓ
Zxℓ pωq

(6)

Good sourcing. Consider the problem of a family living in location j P L deciding where to

source from. The cost in location j ‰ ℓ P L to acquire a variety px,ωq from location ℓ takes into

account the production cost in location ℓ and the transportation costs from ℓ to location j, that is:

pxj,ℓpωq ”

ˆ

wℓ
Zxℓ pωq

˙

τxj,ℓ (7)

Under the working assumption of perfect competition, location j buys from location ℓ if ℓ is

able to supply at the lowest delivery cost, taking into account both production and transportation

costs. The price that location j pays for the variety px,ωq is the lowest among all potential sourcing
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locations:

pxj pωq ” min
!

pxj,ℓpωq : ℓ P L
)

(8)

Food Production Technology. We assume that the productivity draws follows the structure of

Eaton and Kortum (2002). We denote by Zxℓ pωq the productivity of variety px,ωq at location ℓ,

which we refer to as “EK term” below.

For each type of good-variety pair px,ωq, a location receives a productivity draw from a

location-specific Fréchet probability distribution with the cumulative distribution function:

Fxℓ pz̃q “ e´T xℓ z̃
´θx

. (9)

The draws are independent across varieties px,ωq within and across locations. The parameter

T xℓ , or “State of Technology,” defines the mean productivity and reflects the absolute advantage

of location ℓ for type x Eaton and Kortum (2002). The parameter θx, uniform across locations,

governs the dispersion of productivity draws, with higher values implying narrower comparative

advantages. As in Simonovska and Waugh (2014), θx represents the trade elasticity.

Price Determination. Below, we state the main results of the model and refer to a complete

derivation in appendix B. As in Eaton and Kortum (2002), location j faces a probability distribution

of prices of a variety

Gxj,ℓppq “ 1´ e
´rT xℓ pwℓτ

x
j,ℓq

´θx spθ
x

(10)

Because the productivity draws are i.i.d, this probability is the same for every variety px,ωq. This

term gives the probability of location j being supplied by location ℓ with the price up to p for type

x. Since location j buys from the lowest cost supplier, we next show the probability location j buy

type-variety pair px,ωq of a price of at most p. This requires that there is at least one location that

supplies at the price not higher than p, as follows

Gxj ppq “ 1´
ź

ℓPL
r1´Gxj,ℓppqs (11)
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Plugging equation (10) into (11), we recover

Gxj ppq “ 1´ e´Φx
j p

θx

(12)

where

Φx
j ”

ÿ

ℓPL
T xℓ pwℓτ

x
j,ℓq

´θx (13)

The term Φx
j shows how the State of Technology, T xℓ , the input cost of production wℓ, and the

trading frictions τxj,ℓ between each location ℓ and j ultimately shape the price distribution faced at

the location j.

Price of Basket. As we shall see next, the state of these three forces across all locations and

their interaction describes the price level in each location j P L. Equation (12) allows us to recover

the ideal price indexes for each good type, in equation (2) , as follows:

P xj “

˜

ÿ

ℓPL
T xℓ pwℓτ

x
j,ℓq

´θx

¸´ 1
θx

γx for (14)

where γx is a time-invariant constant6.

Trade Shares. We need to find out how trade flows are pinned down with given prices. To

achieve that goal, let us start by computing the probability location j buys a given variety to location

supplied by location l P L. Because the productivity draws are iid, and since there is a continuum

of goods for each type, this probability turns out to be the share of goods that ℓ P L supply to j P L.

We denote by πxj,ℓ the fraction of goods of type x that location j P L buys from location ℓ P L,

which is given by

πxj,ℓ “

T xℓ

´

wℓτ
x
j,ℓ

¯´θx

Φx
j

”

T xℓ

´

wℓτ
x
j,ℓ

¯´θx

ÿ

ℓPL
T xℓ pwℓτ

x
j,ℓq

´θx
(15)

In order to find out the total cost of these expenditures, we need to calculate the price of the

6This constant is equal to Γ

´

θx`1´νx
θx

¯
1

1´νx . Γ puq is the Gamma function, given by
ş8

0 x
u´1e´xdx, for u ą 0.

As we show later, once we apply logs and take differences, this constant disappears entirely
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goods that location j bought from location ℓ. Due to the Fréchet distribution for the productivity

draws, the distribution of paid prices faced by location j P L of varieties coming from ℓ P L

conditional on ℓ being the cheapest supplier turns out to be equal to the distribution of prices

coming from ℓ P L to j P L, that is

Pr
"

pxj,ℓpωq ď p̃ | pxj,ℓpωq ď min
kPL´ℓ

pxj,kpωq

*

“ Gxj pp̃q (16)

The result in (16) implies that the share of expenditures on type x in the location j that is

supplied by location ℓ is also given by πxj,ℓ.

3 Equivalent Variation

In what follows, we borrow insights from the standard demand theory, in the spirit of Fajgelbaum

and Khandelwal (2016) to shed light on why the separation between the trade and the demand

blocks we propose is particularly useful. In particular, as we show next, because of free mobility

of labor across sectors, and because the changes in productivity affect only the agricultural sector,

by assumption, income in terms of the outside good is constant. Hence, changes in utility from the

productivity in the food sector come from the changes the relative price of food alone.

3.1 Climate change through the lens of the Model

The average potential productivity of the food-producing sectors is defined to be µxℓ ” ErZxℓ pωqs.

Because the draws for each ω P r0,1s comes from a Frechét distribution, this average productivity

relates to T xℓ according to the formula

T xℓ “

”

µxℓ

ıθx

κx (17)

where κx is a time-invariant constant common to all locations7. In what follows, we will assume

that climate change affects T xℓ , by looking at µxℓ , which we can read from the GAEZ dataset.

Let Vi,j ” V pP cj , P
q
j , yiq be the indirect utility of an individual with income yi in a location j,

7This constant is equal to Γ

´

θx´1
θx

¯´θx

. Γ puq is the Gamma function, given by
ş8

0 x
u´1e´xdx, for u ą 0.
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where prices are P cj and P qj . Notice that because the outside good is the numeraire, its prices do

not appear in the indirect utility. Taking the log of Vi,j and its total derivative with respect to log

prices and log income, we have:

pVi,j “
ÿ

xPX

B logpVi,jq
B logP xj

pP xj `
B logpVi,jq

B logyi
pyi (18)

where we use the convention ẑ ” d logpzq representing the log change in a variable z. Let EVi,j be

the equivalent variation associated with the prices changes as the proportional change in income,

at pre-shock prices, which would generate the same change in utility as the total derivative above:

pVi,j “
B logpVi,jq

B logyi
EVi,j (19)

Here, EVi,j is the variation in income that would be necessary to achieve the same variation in

utility that would have happened from the variation in prices and income above, that is pVi,j .

We recover the following formula for the Equivalent Variation using Roy’s Identity, while

noticing that ŷi “ 0 since in our setting, due to the free mobility of labor across sectors and the

assumption that Zoℓ is not affected by Climate Change, income is constant8:

EVi,j “
ÿ

xPX
´sxi,j pP xj (20)

where sxi,j is the expenditure share on good x with income i at location j, at the pre-shock prices.

The interpretation of EVi,j is the consumer’s willingness to pay to avoid the price changes.

The prices changes pP xj for each x happen due to changes in the productivity in each crop,

in each location. Through the lens of our model, we map climate change into a change in the

parameter µxℓ , implemented as a change the parameter T xℓ , per equation (17). In particular, we

have

pP xj “
ÿ

ℓPL

B logpP xj q

B logpµxℓq
pµxℓ (21)

8It is straightforward to relax this assumption.
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Using (14), (17), and (15) we have

B logpP xj q

B logpµxℓq
“ ´πxj,ℓ (22)

So that the change in the price of basket of type x in location j relates to changes in the average

productivity in location ℓ according to the trade share, πxj,ℓ. Using this result in (20), we recover

EVi,j “
ÿ

xPX
sxi,j

ÿ

ℓPL
πxj,ℓpµxℓ (23)

Equation (23) shows that the equivalent variation depends on the components. First, it depends on

the expenditure share on type x under income i and location j , sxi,j . This information is recoverable

from the data, by means of exploit the latest consumer expenditure survey, provided a classification

for what should be in each basket x. The second component is the trade-share between location

j and all other suppliers locations ℓ, given the the type x, which is πxj,ℓ. This component is not

observed directly in the intra-national data, and one needs to estimate it. Finally, the last component

is the proportional change in the average potential productivity, pµxℓ .

Next, we show how we perturb the model in order to recover the estimate for πxj,ℓ. The key idea

is to introduce a transitory weather shock that is observed in the data and can be useful to backout

these estimates, provided the structure of the model and the available data.

4 Recovering the Trade Frictions

Our main goal in this section is to estimate the trade shares, which are not directly observed in

the data. In order to do so, we introduce a transitory component to agriculture productivity that

depends on the realization of a weather shock.

Weather Shocks. At each period, a weather shock realizes, which we denote by h ” thℓuℓPL,

where a location ℓ receives hℓ. As we explain below, these weather shocks affect the productivity

of food-producing sectors, affecting their production costs. For simplicity, we assume that these

heat shocks do not affect the productivity of the outside sector. In what follows, we suppress hℓ

from the notation to limit notation clutter.
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In this perturbed environment, there are two terms that define the productivity of the food-

producing sectors. The first is a permanent productivity that follows the structure of Eaton and

Kortum (2002), while the second term captures the transitory effects of heat in the productivity of

crops.

We denote by Z̃xℓ pωq the permanent productivity of variety px,ωq at location ℓ, which we

refer to as “EK term” above. The second term accounts for how the weather realizations affect

productivity temporarily, and we denote it by Gxphℓq. We emphasize that the first term is time-

invariant and the second is stochastic. The “effective efficiency” Zxℓ pωq is then

Zxℓ pωq “ Z̃xℓ pωq
loomoon

EK term

ˆ Gxphℓq
loomoon

Weather Shock

(24)

Different realizations of the weather variable hℓ map into different levels of “effective productiv-

ity”. These effects are invariant to the location — there is no subscript ℓ in the functionGxp¨q— but

we allow food types to have different sensitivities to heat. The unitary cost of production variety

px,ωq is given by

w̃xℓ ”
wℓ

Gxphℓq
(25)

From the expressions above for the prices and trade shares, Equations (14) and (15), the key

change is the replacement of wℓ by w̃xℓ :

P xj “

˜

ÿ

ℓPL
T xℓ pw̃xℓτ

x
j,ℓq

´θx

¸´ 1
θx

γx and πxj,ℓ “

T xℓ

´

w̃xℓτ
x
j,ℓ

¯´θx

ÿ

ℓPL
T xℓ pw̃xℓτ

x
j,ℓq

´θx
(26)

The log linearity of the price of the basket and the trade shares allows us to derive link between

the incidence of heat and changes in prices. We exploit this link to recover estimates of these trade

frictions.
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4.1 From Heat Shocks to Prices Changes

In this section, we show how we recover estimates of trade costs for each type of food good. First,

we develop the results that we need in order to run the structural regression.

For a type x of food, the model implies a close relationship between logarithmic changes in

price and the occurrence of heat in every location. In the model, heat reduces the productivity of

each sector, effectively increasing the unitary cost of production: more labor is required to produce

one unit of output. Then, because the locations trade among themselves, the higher production cost

in one location translates into higher bundle cost in all other locations, with the relative importance

given by the trade shares. Next, we formalize this intuition.

Consider a location j of interest and a location ℓ that receives a heat shock. The price at the

location j increases with an increase in the cost of production at the location ℓ according to

B logpP xj q

B logpw̃xℓ q
“ πxj,ℓ (27)

Equation (27) shows that the elasticity of the price index at j with respect to production costs at

location ℓ is given by the expenditure share of location j from location ℓ. Intuitively, location j is

more exposed to shocks at ℓ with the higher importance of ℓ as a supplier. This production cost

increases with the realization of heat. By our formulation, this implies

B logpw̃xℓ q

Bhℓ
“ ´

B logpGxphℓqq

Bhℓ
” ηx (28)

This delivers a single semi-elasticity that is one output of our estimation procedure. Notice that

we assume, for simplicity, that ηx is homogeneous between locations. This is an identification

assumption. Putting all together, we recover

B logpP xj q

Bhℓ
”

B logpP xj q

B logpw̃xℓ q

B logpw̃xℓ q

Bhℓ

“ πxj,ℓ ˆ ηx (29)

The logarithm increase in the cost of a basket x in a location j goes up with a shock realized at

location ℓ with two components. The first is how much location j is exposed to shocks in ℓ through
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trade, πxj,ℓ multiplied by how much the production cost in ℓ increases upon the realization of heat,

at the margin.

This gives the price change up to a first-order approximation, with “one unit” of the hℓ. In

reality, shocks would affect each region. To take all this into account, we take the total derivative

of the price with respect to heat shocks in each location and sum it across all locations.

∆ logpP xj q « ηx
L

ÿ

ℓ“1

πxj,ℓ∆hℓ (30)

In our approach is then to use variation from observed price changes and heat shock realizations

to infer the trade shares πxj,ℓ. The key idea is to use the structure of these trade shares in the model,

together with observables in the data to recover the trade costs, allowing us to retrieve the missing

shares. Toward this goal, we next describe the data we use.

4.2 Weather Data

Our weather satellite data is extracted from Copernicus Climate Change Service (2019) for the

1950-2021 period. We use the hourly average land temperature at the raster level of 0.10 by 0.109.

We calculate the number of days of exposure to temperatures above 300C/860F at the quarterly

level. We convert the raster-level exposure data to the municipal level by computing the municipal

average exposure over the rasters contained in the municipal boundary. Ultimately, we calculate

the weighted state-level average of exposure, weighting municipalities by the average annual value

of municipal crop production from 1999 to 2021. The crop production data comes from the Sys-

tematic Survey of Agricultural Production collected by IBGE, which we describe in more detail in

the Appendix A.2.

We choose 300C as our temperature threshold, given the adverse effects that temperatures above

this threshold have on crop yields, as well documented in Schlenker and Roberts (2009). They

find non-linear effects of exposure to high temperatures on maize, cotton, and soybean yields.

We validate this choice for the temperature threshold. As documenting the link between heat

exposure and crop yields is not entirely novel in the literature, we include them in the Appendix

A.2. Our analysis shows a contraction in crop yields after exposure to temperatures above 300C
9Equivalent to 11 by 11kms, or 6.5 by 6.5 miles. Owing to the curvature of the earth, the area covered in the grids

increases as we approach the equator line.
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in the crop growing season. The estimates are statistically significant and economically relevant.

After controlling for state-year factors, the semi-elasticity is around ´0.4% for rice, ´0.6% for

soybeans, and 0.6% for beans.

4.3 Consumer Price Index Data

We use data from the official Consumer Price Index (CPI) in Brazil, taken from IBGE10. The most

detailed data are available at the “sub-item” level (e.g., banana, bus fare, t-shirt) at the monthly

frequency, which aggregates into baskets called “items” (e.g., fruits, public transportation, youths

apparel), and further aggregates named “groups”(e.g., food and beverages, transportation, apparel).

Nationwide, IBGE tracks a basket of sub-item prices, mimicking the average consumption basket

of a family with income ranging from 1 to 40 minimum wages and living in urban areas11.

The raw microdata consists of a panel of locations and price changes at sub-item, item, and

group levels, together with the monthly weights. Our sample starts in August 1999, a date that

we chose given the history of hyperinflation before 1994 and the pegged exchange rate from mid-

1994 until early 1999. The last observation date is December 2023. The panel is unbalanced, with

11 locations at the beginning of the sample and 16 at the end of the sample. A location is either a

metro area or a municipality (state capital), and there is at most one location per state. More details

in these locations, and their relevance are relegated to Appendix A.3.

The price levels are not directly available, so we construct price indices. For each location,

we use the raw microdata to construct the price level for a variety of baskets. For a given basket,

we renormalize the weights of the sub-items that are part of the basket so that they sum up to one

hundred and compute the weighted average inflation. Then, we recover the price index for each

basket by compounding its inflation over time. We refer to appendix A.3 for further details on the

CPI data and the steps taken to recover the price levels.

We borrow a tradability classification from the Brazilian Central Bank (BCB) in order to con-

struct low-trade-cost and high-trade-cost food baskets. The BCB calls goods “tradable” and “non-

tradable”, respectively. In the classification, “non-tradable” is not literal: these are goods and

10In Portuguese, it is the IPCA — Índice de Preços ao Consumidor Amplo.
11This income range covers around 90% of the families in the latest Consumer Expenditure Survey, from 2017-

2018. The national minimum wage in 2018 was R$ 954. The average commercial exchange rate against the U.S.
dollar fr 2018 was approximately R$ 3,65 per US$, so the minimum wage was approximately US$ 260 in 2018.
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services that are produced and consumed primarily domestically, with a minor role played by

international trade. Examples of “Tradable Food” are soybean, rice, wheat, sugar, and their deriva-

tives, while beans and fresh food such as tomatoes, lettuce, and kale are examples of “Non-tradable

Food”. We refer to appendix A.4 for further details on the BCB classification. In order to avoid

any confusion, we call the “tradable” basket as low-trade-cost “LTC” and the “non-tradable” as

HTC.

4.4 Structure for the Trade Shares

We use the functional form for the trade shares shares from Equation (15) in a non-linear estimation

approach. Specifically, we estimate the parameters rT xℓ s, wages rw̃xℓ s, and a parameter θx, while

imposing a functional form on trade frictions rτxj,ℓs based on observables. We then maximize the

fit of the model by aligning it with this structure.

For the trade cost functional form τxj,ℓ, we adopt a straightforward approach, using driving time

between state capitals with a constant elasticity. A non-linear least squares method allows us to

estimate the elasticity δx separately for each food type.

The following sections outline the data sources and processing methods used to construct the

trade shares

4.4.1 Technology Level T xℓ

The State of Technology parameter T xℓ relates to the average potential productivity of a location ℓ

for type x, as Equation (17) highlights. It is important to note that this Equation does not allow us

to identify the parameter θx separately. This is a common feature in the trade models, where some

parameters cannot be separately identified. Hence, we take a value from the literature, in particular

Astorga-Rojas (2024) and Albert et al. (2024).

The GAEZ data come in raster form for 53 crops, for the historical crop yields for the period of

1981-2010. The unit of measurement is kilograms per hectare. For each of the these 53 crops, we

calculate the potential yield at the state level. There are two adjustments that we need to perform

with these data so that we can arrive at an estimate for T xℓ .

First, since our model considers labor as the sole production factor, we must translate land
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productivity into labor productivity. To accomplish this, we rely on data from Brazil’s most recent

agricultural census, which took place in 2017. We utilize the national average for input require-

ments per crop, which indicates the number of workers employed per unit of land. Two funda-

mental assumptions underpin this approach. Firstly, a Leontief production function is employed,

implying a fixed ratio between land and workers across different locations. This ratio varies based

on the crop: some crops require more land, while others demand more labor. Secondly, it is as-

sumed that land is relatively abundant, implying that production is contingent on labor allocation

rather than the land’s quantity.

The subsequent adjustment involves incorporating averaging. This step is crucial as the units

after the initial adjustment, and even before, do not align across different crops, resulting in kilo-

grams per worker. By converting land productivity into worker productivity measured in kilo-

grams, we address the issue by multiplying labor productivity by the historical average price per

crop at the national level. Consequently, we map µxℓ to the revenue productivity within the dataset.

The source of the crop price data is the Systematic Survey of Agricultural Production (SSAP)12.

We used the ratio between the total production value divided by the total production quantity at the

national level per year from 2002 to 202213. Then, we take the average over the years. The use

of national price is intended to mitigate the issue of the state price incorporating the trade frictions

themselves, as the local price in isolated places tends to be higher.

For the second adjustment, we aligned the FAO potential crop yields with those monitored by

the SSAP. Altogether, there are 29 crops that were mapped between these datasets. These 29 crops

are categorized as either low-trade-cost or high-trade-cost based on their names’ correspondence

with CPI food items. Specifically, 17 crops fall under LTC, while 12 are designated as HTC. These

matched crops represent on average, across time, 90 percent of all crop production value and 95

percent of land utilization nationwide. Appendix A.5 contains a complete list of these crops, along

with further details on these adjustment factors.

Finally, since the trade share in Equation (15) is homogeneous of degree 0 in the vector of

productivities, we choose the state of São Paulo as a reference and normalize the other states T xℓ
as a ratio of the level of São Paulo. The resulting measure for µxℓ for each food type is show in

12In Portuguese, “Levantamento Sistemático da Produção Agrı́cola”.
13The records for 2001 and before of the prices were measured as local currency per unit or bunch for some crops,

especially fruits.
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Appendix A.5.

4.4.2 Wage level w̃xℓ

We borrow wages from the Continuous National Household Sample Survey14 conducted by the

IBGE. This is a household survey that started in 2012 and is ongoing. The data is released at the

state level at a quarterly frequency.

We make two decisions. First, similarly to the parameters T xℓ , the trade share is Equation (15),

it is homogeneous to zero degree in the wages vector. Hence, we work again with São Paulo as a

reference state: the wage cost normalized to 1 and fed into the estimation procedure the relative

wage of all states to the level in São Paulo.

Furthermore, given that the temporal coverage is less than half of that provided by the CPI

data, utilizing the time series of relative wages would result in a loss of approximately half of our

sample size. To address this limitation, we opt to use a singular representative value for the wage

in each state. Specifically, we compute the varying ratios of relative wages compared to São Paulo

and subsequently determine the average of this time series.

Through the lens of our model, one might interpret this strategy as follows: we take a first-order

approximation of this trade shares with respect to w̃xℓ around a zero heat shock position h “ 0 and

let fixed effects and the residuals soak the approximation error. If this relative rate shows any

particular seasonal pattern, the state-season fixed effects that we include in the regression would

capture such a pattern. The series we use is the average usually received wage in all occupations.

For our purposes, this serves as a proxy for Zoℓ .

There are two main implications resulting from taking this approach. First, since the wage is

constant, it follows that the trade shares are constant - the state of technology, trade frictions, and

the parameter θx are assumed to be invariant in this stage. In reality, these trade shares probably

fluctuate, but these are all unobserved fluctuations. Second, the wage level that we input into the

estimation procedure is the same regardless of the type of food. The values for the wage we use

for each state can be found here in Appendix A.5.

14PNAD Contı́nua, in Portuguese
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4.4.3 Trade Elasticity θx

There is great variability in the estimates of trade elasticity in the empirical applications of trade

models. As discussed above, we borrow the trade elasticity parameter θx from Astorga-Rojas

(2024). The author leverages the construction of Brasilia and the project to connect the newly

created national capital city to other state capitals as a natural experiment. Using archival data with

state-to-state trade flows from 1942 to 1949 and 1968 to 1974; the author recovers an estimate for

the trade elasticity from a gravity equation using the construction plan for roads connecting Brasilia

to other state capitals as an instrument. The value he finds is θx “ 3.39. The value is the same

used in Albert et al. (2024) and within the range proposed in the literature. Notice that we use the

same trade elasticity for both types of food.

Pellegrina (2022) relies on archival data from Brazil together with the price of agricultural

goods finds a trade elasticity θx around 3.90 for perishable agricultural products (vegetables and

fruits), and θx around 5.1 and 5.6 for cereals (rice, soybeans, corn, and wheat) and other non-

perishable agricultural products, respectively. The value we use, θx “ 3.39, is within the range

proposed in Simonovska and Waugh (2014) and similar to the value of 4 commonly assumed when

this parameter is not directly estimated. Ramondo et al. (2016) uses a value of 4 when studying

domestic frictions in the US.

4.4.4 Trade Frictions Specification

We need to discipline one matrix of trade costs per type of food, totaling values of parameters 27ˆ

27ˆ2. Given the assumed full integration within each state pτxj,j “ 1q, we impose symmetry pτxj,ℓ “

τxℓ,jq of the trade costs reduces the number of parameters. The lack of trade data within subparts of

a nation is common (Ramondo et al., 2016; Pellegrina, 2022; Sotelo, 2020). Approximately two

thirds of the cargo in Brazil is conducted by trucks via roads (World Bank, 2022),we impose that

these trade costs are a function of the driving time between state capitals.

Precisely, the functional form that we use is

logpτxj,ℓq “

$

’

&

’

%

0 if j “ ℓ

δx logpdj,ℓq if j ‰ ℓ
(31)
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The variable variable dj,ℓ ě 0 is a measure of distance between the capital of states j and ℓ. As

we explained in the model, we set τj,ℓ “ 1 whenever j “ ℓ. For all the other cases, the distance is

non-zero, and we assume that the trade friction τxj,ℓ exhibits a constant elasticity with respect to the

measure of the distance. We allow this elasticity to be different for the two types of food goods,

low-trade-cost and high-trade-cost.

We measure the distance dj,ℓ by the driving time, in hours, from the capitals of j and ℓ. We

collect this information from Open Street Maps in July 2024. Similarly, Pellegrina (2022) uses

Google Maps data for the driving time for some of his estimation. The information contains the

driving distance in kilometers and the driving time in hours - which allows us to compute the

average speed, measured in kilometers per hour. Since there is substantial heterogeneity in the

average speed between locations, we interpret this as a sign of heterogeneous road quality across

the nation.

Table 1: Descriptive statistics for alternative measures of Driving Distance

Measure Origin Capital N Mean SD Min p25 p50 p75 Max

Driving Distance, km

All 702 2619 1443 112 1534 2430 3597 6702
Manaus 26 4050 1403 754 3420 4392 4988 6020
São Paulo 26 2152 1220 408 956 2309 2935 4653
Porto Alegre 26 2975 1312 473 1884 3427 4000 5236

Driving Time, hours

All 702 38 22 2 21 34 53 100
Manaus 26 65 20 13 56 68 77 90
São Paulo 26 30 19 6 13 30 39 73
Porto Alegre 26 41 19 6 26 45 53 81

Average Speed, km/hour

All 702 70 6 52 66 71 75 82
Manaus 26 62 4 52 60 62 65 67
São Paulo 26 73 5 63 69 74 77 81
Porto Alegre 26 74 4 65 70 75 77 78

Notes: The table displays the statistics for driving distance, driving time and average speed between all
pairs of state capitals in Brazil. There are 27 states, with 702 (27ˆ26) unique pairs of origin-destinations.
Swapping the order of origin and destination within the pair might lead to different estimates for the three
variables shown in the table. The reason is that the exact route might not be two-ways all along. The
differences are usually smaller than 1%, considering absolute deviation from the mid-point. Manaus is
the capital of Amazonas, in the Norte Region in the Amazon. São Paulo is the capital of São Paulo and
Porto Alegre is the capital of Rio Grande do Sul, the state most to the South. Data is from Open Street
Maps, collected in July 2024. p25 stands for the percentile 25% in the distribution, while p75 stands for
the percentile 75%.

Table 1 shows some descriptive statistics for all unique origin-destination pairs of state capitals

(“All”), and some selected capitals. Brazil is a large country, so driving distance measured in
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kilometers between state capitals go as high as 6700 km. The median travel time is 34 hours,

spamming from 2 to 100 hours. There is substantial dispersion in road quality, proxied by the

average speed: the interquantile interval for the average speed is 9 km, from 75km/h to 66km/h,

while the range of this variable is from 52km/h to 82km/h.

In order to further illustrate the dispersion is road quality and remoteness, we include in Table

1 three state capitals for reference. We choose Manuas, the state capital of Amazonas, to be a

representative location of a reasonably dense location that is somewhat far from other state capitals.

Manaus is situated in the center of the Amazon rainforest, an area that remains fairly secluded, with

road travel speeds being quite modest. The median driving time from Manaus to other capitals is

68 hours, with the median speed being 62 km. It is not only about how distant Manaus is, but how

difficult or costly, in time, to get there.

We added two other capitals for easing the comparison. São Paulo, the capital of the homony-

mous state, is the richest capital and amounts to the most populated capital. The median and

average driving time is 30 hours, with a median speed of 74 km/hour. Porto Alegre is the state

capital of Rio Grande do Sul, the state that is most to the south. Almost by construction, Porto

Alegre is “far” from many states, specially the ones from the North and Northeast. This pattern

can be seen from the driving distances and driving times, that are offset relatively to São Paulo,

that is somewhat more central. It is somewhat remarkable that the average speed departing from

São Paulo or from Porto Alegre are very much lined up.

Having gotten a sense of these differences in the driving time, we next describe the estimating

regression that we run to recover the trade costs.

4.4.5 Estimating Equation and Results

We are now in place to implement our specification, as in (30). The estimating regression is

lnppxj,tq ´ lnppxj,t´1q “ ηx
L

ÿ

ℓ“1

πxj,ℓHeatℓ,t ` ξt `χℓ,s ` ϵj,t (32)

The dependent variable is the log change in prices for a basket x in a location j between period t

and t´ 1. The baskets that we consider are the low-trade-cost and the high-trade-cost food, from

the CPI data. The independent variable is a weighted average of the heat across all states, with the
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weights given by the trade shares between the reference state j and all others, indexed by ℓ. The

heatℓ,t variable is the number of hours, measured in days, state ℓ was exposed to the temperature

of 300C during quarter t. We run the regression at the quarterly frequency.

Because there is variation in the price data that are non-necessarily related to the realizations of

heat, we further include two types of fixed effects. First, ξt is the quarterly date fixed effect. This

term captures forces that push inflation up and down in all locations regardless of the heat shocks,

such as the business cycle or the nominal interest rate. In addition, we also have a fixed effect

interacting with location and season, namely ξℓ,s. In Brazil, the seasons are summer, fall, winter,

and spring from quarter one to four of the calendar year. These dummies are meant to capture

seasonal patterns that are specific to each location. Because Brazil is very vast across the latitudes

and relatively to the east coast, there is substantial heterogeneity in the seasonal patterns of heat —

and hence prices. For example, locations in the North and Northeast are closer to the Equator line

and then to be relatively warmer.

The multiplying coefficient ηx is an outcome of the procedure. This is the semi-elasticity of

the yields in a given location with respect to the heat that is realized at that location, as in Equation

(29). We first discuss the results regarding δx, later focusing on the discussion for ηx.

Table 2 shows the results from the non-linear least square estimate of Equation (32). For goods

classified as low-trade-cost, the elasticity of the trade friction with respect to the driving time is

about 0.30, while this elasticity is around 0.56 for the high-trade-cost food goods. We bootstrapped

the confidence interval for this elasticity using 300 repetitions, with 95% of the sample clustered

at the state level. The coefficients are statistically different from zero and each other.
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Table 2: Regression (32), estimated by Nonlinear Least Squares

LTC Food Goods HTC Food Goods

logpdj,ℓq, δx 0.303*** 0.561***
(0.053) (0.083)

Observations 1,211 1,211
R-squared 0.89 0.82
States 16 16
Fixed Effects:
Quarterly Date ✓ ✓

State-Season ✓ ✓

Note: Bootstrapped standard errors clustered at State
level. We performed 300 repetitions, with 95% of the sam-
ple for each state. Significance levels: p ă *** 1%

By construction, these elasticities get the dynamics of both price and heat shocks from the data

as close as possible to the ones that the model implies. We now offer some heuristic explanations

on why the ordering of these elasticity turns out to be consistent with the ordering low-versus-high

trade cost in the classification.

Figure 1: Spatial Correlations of Heat and Inflation

(a) Heat shocks (b) Inflation of Food Goods

Note: For both panels, the horizontal axis is the driving time between the pair of state capitals, in log
scale. Panel (a) shows the spatial correlation of the heat shocks. The vertical axis is the correlation across
the time series of these heat shocks for each pair of states. Panel (b) shows the correlation of food good
inflation for each pair of states, by tradability classification. Here P̂ xj ” logpP xt q ´ logpP xt´1q. In yellow,
we have the low-trade-cost food goods, while in green we have the high-trade-cost goods.

Heat shocks are naturally spatially correlated. Panel (a) of Figure 1 shows the correlation of

heat shocks between pairs of states plotted against the driving time between their capitals. Nearby

states, with shorter driving times, experience similar shocks, leading to high correlations.
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Panel (b) of Figure 1 reveals a less intuitive pattern: nearby locations also exhibit closely related

inflation dynamics, with correlations decreasing as driving time increases. Unlike heat shocks,

inflation correlations remain above 0.50 even for distant locations. This persistence reflects other

nationwide drivers of inflation, such as monetary policy and the business cycle15.

A notable feature in Panel (b) is that the decline in inflation correlation is sharper for high-

trade-cost (HTC) food goods.16 Due to higher trade costs, states are more likely to source HTC

goods from nearby states, making local inflation more sensitive to local conditions. Since heat

shock correlations drop off quickly with distance, inflation correlations for HTC goods decline

faster than for low-trade-cost goods. Thus, the higher elasticity δx for HTC goods aligns with the

observed correlation patterns of both heat shocks and inflation across the cross-section.

Table 3: Outcome for regression (32) under alternative regressors

Dependent variable: 100ˆ plogppxj,tq ´ logppxj,t´1qq

LTC Food HTC Food LTC Food HTC Food
(1) (2) (3) (4)

Heatt,j 0.049*** 0.104*
(0.017) (0.058)

řL
ℓ“1π

x
j,ℓHeatt,ℓ , ηx 0.113*** 0.120*

(0.039) (0.066)
Observations 1,211 1,211 1,211 1,211
R-squared 0.89 0.82 0.89 0.82
States 16 16 16 16
Fixed Effects:

Quarterly Date ✓ ✓ ✓ ✓
State-Season ✓ ✓ ✓ ✓

Note: Robust Driscroll-Kraay standard errors. Significance levels: p ă

*** 1%, ** 5%, * 10%. Columns (1) and (2) show the result of the regression
in (32) by imposing πxj,j “ 1, that is including only the own shock to state j.
Columns (3) and (4) exhibit the results for the weighted average of the heat
shocks and with the estimation conducted by NLS.

A notable feature in Table 3 is the change in estimated coefficients when comparing regres-

sions using only own-state shocks versus those including shocks from all states. Since states trade

with one another, heat shocks affecting sourcing states influence the price dynamics of destination

states. By considering only the own-state shock, relevant variables are omitted, leading to biased
15Although not depicted in the figure, components that are entirely immobile, such as “food away from home,”

exhibit an average correlation of 0.30, which remains constant regardless of driving time.
16This pattern is supported by regression analysis showing statistically different slopes for high- and low-trade-cost

goods.
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coefficients in columns (1) and (2). Accounting for shocks from all states, through the structure of

the model for πxj,ℓ, effectively incorporates these variables under the assumption that ηx remains

consistent across states.

The relationship between the coefficients under different specifications also connects to the

elasticity estimate δx for each food type. For high-trade-cost (HTC) goods, the elasticity δq is

relatively high, resulting in low trade shares for states other than the own state (ℓ ‰ j). Conse-

quently, the coefficients in columns (2) and (4) are similar, reflecting a near-autarky situation for

HTC goods. In contrast, for low-trade-cost (LTC) goods, the lower elasticity δc leads to more

interstate trade, with πcj,j deviating from unity. As a result, including previously omitted variables

causes a significant shift in the estimated coefficients between columns (1) and (3). Interestingly,

the resulting semi-elasticity of crop yields to heat, ηx, remains consistent across both food types.

The heat elasticity ηx, detailed in Table 3, reflects short-term elasticity, measuring the change

in log yields from one additional day above 300C in a quarter. It is not intended to predict long-

term productivity changes under climate change scenarios.

While ηx is not useful for counterfactual exercises, it validates the model by aligning implied

semi-elasticities of crop yields to heat shocks with estimates from crop production data (Appendix

A.2). Column (5) of Tables A.1, A.2, and A.3 report elasticities of 0.4%–0.6% for rice, soybeans,

and beans, slightly higher than the 0.11% and 0.12% in Table 3, columns (3) and (4). Differences

arise, for example, because crop production data are annual, focusing on critical growth cycles,

while regression (32) is quarterly and averages sensitivity across crops and seasons.

Having recovered the estimates for the trade frictions, we are now ready to recover the trade

shares, πxj,ℓ, using equation (15). In the equivalent variation formula, equation (23), there are two

other parts that can be obtained from the data. First, the food expenditure shares on type x at

location j under income group i, sxi,jl are recoverable from the latest consumer expenditure survey.

Second, the changes in productivity, captured by µ̂xℓ , are drawn from the different scenarios for

Climate Change.

While the first-order approach is transparent and intuitive, as the productivity changes become

large, the approximation error may grow. And, as we show later in the text, these productivity

shifts implied by climate change are significant. To deal with this, we specialize in a particular

utility function that allows us to perform counterfactuals globally.
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5 Preferences and Model Fit

5.1 Utility Function

We employ a non-homothetic utility function, which aligns the income’s share allocated to food

with observed data by depending on income. We use a Stone-Geary utility function that involves

a minimum level of food consumption cf . Although the utility function remains consistent across

regions, disparities in the costs of these minimum levels create state-specific effects. These are due

to regional differences in food prices, leading to uneven minimum consumption costs. In addition,

regional income variations influence the relative burden of these costs on households in different

states.

U pcoi,ℓ, c
f
i,ℓq “ p1´αf q logpcoi,ℓq `αf logpc

f
i,ℓ ´ cf q (33)

where coi,ℓ is the consumption of the outside good, cfi,ℓ is the food consumption and cf is the

minimum consumption of good. The indices pi, ℓq refer to income i in location ℓ.

Food is a composite of low- and high-trade-cost food CES aggregators. We assume for now

that this composite is a Cobb-Douglas function, as follows:

c
f
i,ℓ “ αc logpcci,ℓq `αq logpc

q
i,ℓq (34)

cci,ℓ is the consumption of the low-trade-cost food composite and cqi,ℓ is the high-trade-cost food

composite, with income i in location ℓ. This formulation allows us to write the price of food in

location ℓ as a function of the price of each type-specific basket:

P
f
ℓ “

ˆ

P cℓ
αc

˙αc
˜

P
q
ℓ

αq

¸αq

(35)

Notice that the income level does not appear in this price: regardless of income, the price of food

depends on the location ℓ where it is consumed. However, due to the non-homotheticity of the

utility function, households with different incomes in the same location will face distinct burdens
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to pay for the floor consumption of food. Precisely, the food expenditure share is given by

s
f
i,ℓ “ αf ` p1´αf q

P
f
ℓ c

f

yi,ℓ
loomoon

ψi,ℓ

(36)

The term ψi,ℓ captures the subsistence share: the share of income required to pay the floor con-

sumption of food. Given the Cobb-Douglas aggregator for the food composite, the food expendi-

ture share for each type is given by

sxi,ℓ “ αxs
f
i,ℓ, x P tc,qu (37)

Income. For the household in group i living in location ℓ, its income is simply their effective

hours supply, ei,ℓ, times the wage prevailing at that location, wℓ. Because of free mobility across

sectors, the wage is pinned down by the productivity in the outside sector, wℓ “ Zoℓ . The income

yi,ℓ “ ei,ℓwℓ “ ei,ℓZ
o
ℓ .

5.2 Calibrating the Parameters

In our setting, since markets are competitive, prices are given by the marginal cost of production.

Per equation (14), the prices of the baskets x are pinned down by State of Technology, T xℓ , the

wages w̃xℓ and the trade frictions between locations, τxj,ℓ. Because labor is fully mobile across the

sectors, as in Costinot et al. (2016), the productivity of the outside sector Zoℓ determines the labor

cost in each state. As in Eaton and Kortum (2002), the income is hence exogenously given by the

effective labor hours and the productivity Zoℓ . The key implication is a separation between price

determination and the demand side.

In contrast, the preference parameters and the income pin down the expenditure shares, for

each household in each location. Given that the wage rate is governed by the productivity of the

outside sector, Zoℓ , introducing income heterogeneity is straightforward. We take the route of al-

lowing households in each location to have heterogeneous endowments of effective labor hours.

Facing the same hourly wage, the differences in effective labor hours generate mechanically in-

come heterogeneity. Given the income for each household in each location, our goal is to calibrate
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the preference parameters to match the food expenditure shares as closely as possible, taking as

given the production structure and the implied prices. In our setting, we need to assign values for 6

parameters, two that are general pαf , cf q, and one pair for each type of food pαx,νxq for x P tc,qu.

Next, we discuss the role of each of these parameters.

First, αf approximates the food expenditure share as the subsistence ratio ψi,ℓ gets close to

0. Hence, this parameter is disciplined mostly by the behavior of the food expenditure share for

the highest income decile. Conversely, when ψi,ℓ increases, so does the food expenditure share.

Hence, the food expenditure share of the lowest-income decile disciplines the choice of cf , which

drives ψi,ℓ.

For the parameters of each food type, we set αc “ αq “ 0.5, based on average food expen-

diture shares. The CPI data includes both goods and services, such as “Food away from home,”

which falls under food services. In the BCB basket, the “tradable” (low-trade-cost) basket consists

only of goods, while the “non-tradable” (high-trade-cost) basket includes both goods and services.

Historically, the tradable basket accounts for around 50% of the food category in the CPI. Within

the non-tradable basket, the representative family tracked by the official CPI (IPCA) allocates ap-

proximately 40% to goods and 60% to services. Since our model does not explicitly include food

services, we incorporate the entire non-tradable basket into the high-trade-cost category.17

For the remaining parameters, we set νc “ 3 and νq “ 3. In our model, these parameters

influence the price level, as shown in equation (14) through γx.18 A higher νx, provided the

condition νx ă 1`θx is met, results in a lower price level. As long as this constraint is satisfied,

the specific values of νc and νq are not critical, as they primarily serve to rescale the productivity

vectors T xℓ .

We want to estimate the parameters pαf , cf q. Our goal is, given prices and income, pick

pαf , cf q to describe the food expenditure shares as best as possible. Concretely, the estimated

parameters solve

{

pαf , cf q P argmin

«

ÿ

i

ÿ

ℓ

Λi,ℓ

´

s
f ,data
i,ℓ ´ s

f ,model
i,ℓ pαf , cf q

¯2
ff

17If we only considered food goods, excluding services, the shares would be αc “ 0.70 and αq “ 0.30.
18As in Eaton and Kortum (2002), these parameters must satisfy νx ă 1 ` θx to ensure that basket prices are

well-defined.
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where we weighted the deviations by the population shares in income decile i in state ℓ, Λi,ℓ.

As explained earlier, the income brackets are defined at the national level, so the within state

population is not necessarily even across i. In addition, the average income for each bracket i

is not even across the states. We use this heterogeneity to discipline the effective hours, ei,j as

follows: together with the level of Zoj , we calibrate ei,j to match the income level for each bracket

at each state, according to yi,j “ ei,jZ
o
j .

Our data for the expenditure shares come from the latest Consumer Expenditure Survey19, con-

ducted between 2017 and 2018. The coverage for the survey is national, and the unit of aggregation

is the household level. In total, 57 920 households were interviewed, aiming to be representative

of 69 017 704 households nationwide. The average family size is 3.00 persons per household.

From the microdata, we recover three estimates that are useful for our purposes: (i) the popula-

tion distribution, measured by the number of households in each state; (ii) the income distribution

at each state; (iii) the food expenditure shares at each state given an income bracket. Let i denote

an income decile and ℓ denote a state. We take the income distribution at the national level and

define brackets based on their deciles. Then, we take the microdata conditional for each state and

recover the number of families within the brackets, together with their average income within the

bracket. This process retrieves a matrix Λi,ℓ with the share of families living in state ℓ with income

decile i, relative to the number of families across the country, together with a matrix Yi,ℓ with the

average income under bracket i in state ℓ. We sum all expenditures and income for a given pair

pi, ℓq and take their ratio to recover the expenditure shares on a particular good type.

Calibration and Fit. The outcome of our estimation is αf “ 0.1694, cf “ 0.0321. The cal-

ibration approach mechanically gives more weight to the fit for states that have relatively more

households, because Λi,ℓ for such states is higher. One alternative weighting scheme for this loss

function is to attribute the same weight for the states, by setting an alternative weight that give the

same weight for each bin pi, ℓq in the loss function. The resulting parameters are qualitatively and

quantitatively alike.

19Pesquisa de Orçamentos Familiares, POF, in Portuguese. The two other more recent versions are from 2008-2009
and 2002-2003.
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Figure 2: Food Expenditure Share Across the Income Distribution

Notes: The figure shows the relationship between food expenditure shares and income
deciles, comparing the model’s predictions (blue solid line) with the actual data (red
dashed line). The y-axis represents the percentage of total expenditure allocated to food,
while the x-axis corresponds to income deciles, from the lowest (1st decile) to the highest
(10th decile).

The model fit, with the food expenditure share at the national level, is shown in Figure 2. Figure

illustrates the relationship between food expenditure shares and income deciles, comparing model

predictions with actual data. The y-axis represents the percentage of total expenditure allocated to

food, while the x-axis displays income deciles, ranging from the lowest (1st decile) to the highest

(10th decile). As income increases, the food expenditure share tends to decline, in the data and

in the model. In the model, the decline is tied to the decrease in ψfi,ℓ as increase increase. This

variable captures the cost of the floor consumption of food relative to total income. The severity

of this cost depends on the state, as the price of food is dispersed across space due to the trade

frictions.

The model provides a close fit to the actual data, particularly in the lower and middle-income

deciles, where the predicted and observed shares are closely aligned. However, there is a slight

divergence in the higher income deciles, where the model underestimates the share of expenditure

on food compared to the observed data. Alternative specifications for the out-layer of the utility

functions, e.g. Comin et al. (2021) might help improve the fit for the upper income deciles20.

20This is work in progress.
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Table 4: Model parameters under the benchmark calibration

Parameter Value Source

Productivity
T xℓ State of Technology [:] Average potential productivity, section 4.4
Zoℓ Outside Good Productivity [:] Household labor survey, section 4.4

Trade
τxj,ℓ Trade Frictions [;] Specification in Equation 31
δc Trade cost elasticity, LTC 0.30 Regression of price on heat shocks, section 4.4
δq Trade cost elasticity, HTC 0.56 Regression of price on heat shocks, section 4.4
θx Trade elasticity for LTC and HTC 3.39 Literature, section 4.4

Preferences
αf Food weight in utility function 0.16 Joint estimation for p ” pαf , cf q, section 5.2
cf Minimum consumption of food 0.03 Joint estimation for p ” pαf , cf q, section 5.2
νc Elasticity of Substitution across LTC food 3.00 Normalization of Price level, section 5.2
νq Elasticity of Substitution across HTC food 3.00 Normalization of Price level, section 5.2
αc LTC expenditure share within food 0.50 Consumer Prince Index basket, section 5.2
αq HTC expenditure share within food 0.50 Consumer Prince Index basket, section 5.2

Distributions: Population and Income
Λi,ℓ Population shares under income i in location ℓ [;] Consumer Expenditure Survey, section 5.2
Yi,ℓ Income level for location [;] Consumer Expenditure Survey, section 5.2

Notes: r:s refers to either a vector of values, while r;s refers to a matrix of values.

As the authors explain, the drawback with the Stone-Geary formulation is that when income is

high, the subsistence cost becomes negligible, flattening the Engel curve. Extending the analysis

in order to incorporate the Comin et al. (2021) preferences is relatively straight-forward because

of the separation between the pricing of goods and the income.

Table 4 summarizes all the parameters for the calibration of the baseline, using the benchmark

calibration.

6 Counterfactuals

With the baseline parameters established for the model, we proceed to outline the two counterfac-

tual analyses we conduct. The first analysis explores how climate change impacts different regions

and varies across income levels, focusing on changes in food prices. To assess this, we employed

GAEZ projections under different scenarios for potential productivity concerning each food type x.

The second analysis examines how enhancing transportation infrastructure in Brazil might reduce
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the negative impacts of climate change by decreasing trade expenses.

6.1 Climate Change

In order to shed light on the main ingredients for our counterfactuals, we rewrite the equivalent

variation formula, as in equation (23):

EVi,j “
ÿ

xPX
sxi,j

ÿ

ℓPL
πxj,ℓpµxℓ

In our model, we derive sxi,j and πxj,ℓ, and use µ̂xℓ directly from the data. Alternatively, the expen-

diture shares sxi,j can also be extracted directly from the Consumer Expenditure Survey microdata,

offering more precise estimates by closely matching the actual data.21 We determine the percent-

age change µ̂xℓ by using the same methodology for calculating trade shares and determining T xℓ , as

detailed in subsection 4.4.1.

Our initial parameters include values for µxℓ , which we convert into values for T xℓ . To determine

the counterfactual value for these terms, we conduct the same procedures used to estimate T xℓ in

the baseline scenario, as outlined in section 4.4. The main distinction is that we now incorporate

FAO projections for the potential yield of each crop under different Climate Change scenarios,

replacing historical potential levels.

The procedure we undertake comprises the following steps. Initially, for each crop and location,

we consider a set of counterfactual potential productivities. We perform two adjustments similar

to those used to derive the metric µxℓ in the historical baseline scenario. First, land productivity is

transformed into labor productivity using the input requirements from the most recent agricultural

census. Following this, labor productivity is converted into a standardized unit by multiplying it

by average historical prices. Ultimately, this provides a measurement of units of local currency per

worker. For both adjustments, national averages are employed as a benchmark to minimize any

interaction between trade frictions and revenue productivity, which could occur if location-specific

input requirements and historical prices were used.

In an alternative scenario, µx1
ℓ is defined as the average of this revenue productivity, serving as

our measure for µxℓ . From the construction in equation (17), a corresponding State of Technologies

21We are currently recovering exact shares from the microdata directly.
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vector, represented by pT xℓ q1, is derived to allow for the complete re-computation of the model.

This lets us compare the results with those of the first-order method. For the results of the first-

order approach, the logarithmic variations in µxℓ are used, which are determined by

µ̂xℓ ” logpµx1
ℓ q ´ logpµxℓq (38)

Importantly, similar to the approach in Costinot et al. (2016), in which the productivity of the

outside sector is maintained constant, we assume that climate change does not influence productiv-

ity in the outside sector. If it did, an additional component would appear in the equivalent variation

formula, as shown in equation (23), to account for changes in income. Although broadening the

analysis within the model is straightforward, addressing the measurement concerns about changes

in non-agricultural productivity is itself challenging, as noted in some strands of the literature (Bilal

and Känzig, 2024; Bilal and Rossi-Hansberg, 2023; Cruz and Rossi-Hansberg, 2024). We proceed

with a discussion of the data relevant to these hypothetical climate change scenarios.

6.2 Climate Change Scenarios

The GAEZ dataset offers numerous alternative forecasts for global crop potential productivity

under various scenarios, presented as rasters. To determine potential productivities per state, we

convert the raster data to align with state boundaries, yielding area-weighted potential productivity

for each crop under each scenario, exactly as we did for the baseline model.

Apart from the assumptions regarding input intensity and irrigation practices, each scenario is

characterized by three critical dimensions: the forecast timeline, the intensity of greenhouse gases

responsible for warming, and the model that translates greenhouse gases concentration and other

socioeconomic assumptions into temperature increases. We employed the high-input (maximum

yield assumption with modern machinery) and rain-fed settings from the GAEZ portal. Costinot

et al. (2016) uses this same high-input, rain-fed setup based on an earlier version (v3) of the GAEZ

dataset.
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Time Horizon. The first dimension concerns the time horizon. The GAEZ data set shows the

historical potential productivity from 1981 to 201022. The alternative scenarios present data for

three 30-year periods, each with a point estimate. For these intervals — 2010-2040, 2041-2070,

and 2071-2100 –— the reported crop potential yields are the simple average across the series,

subject to all settings except time.

Greenhouse Gas Concentration. The second dimension considers future greenhouse gas con-

centrations under each scenario. Various assumptions correspond to distinct Representative Con-

centration Pathways (RCPs), as defined by the Intergovernmental Panel on Climate Change (IPCC)

(Gutiérrez et al., 2021). These pathways are characterized by their radiative forcing levels, ex-

pressed in W/m2. Four main trajectories include RCP 2.6, 4.5, 6.0, and 8.5. Generally, a lower

value indicates a cooler Earth (less greenhouse forcing) and demands more stringent mitigation

efforts to maintain that scenario.

Climate Models. The GAEZ offers crop potential yields derived from five distinct climate mod-

els, integrating RCPs as input23. For our analysis, we utilized the average yield from these models

for each time frame (2040, 2070, 2100) and RCP (2.6, 4.5, 6.0, 8.5). These averages are applied at

the crop level to determine the counterfactual average productivity, µx1
ℓ .

Summary. There are 60 triplet assortments, composed of three time horizons, four RCPs, and

five climate models. Initially, we fix a time horizon and an RCP and then average potential crop

yields over the climate models, reducing combinations to 12. Due to higher uncertainty in longer

horizon estimates, our analysis concentrates on the 2040 time horizon and the optimistic scenario

(RCP 2.6) concerning greenhouse gas concentrations. The choice for this Optimistic scenario is

illustrative. Even for the lowest greenhouse gases contraction, there is already wide variability in

the changes in productivity.

222010 marks the most recent year of available historical data. The project compiles several data sources to make
these historical evaluations and forecasts, including temperature, precipitation, wind, and soil characteristics.

23The models include GFDL-ESM2m, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M.
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6.2.1 Details on the Productivity Changes

Significant variability exists in the percentage change of potential yield over short timescales

among different crops and regions. Figure 3 illustrates this heterogeneity by depicting the change

in potential yield under the Optimistic scenario for wetland rice in panel (a), cassava in panel (b),

soybean in panel (c), and beans in panel (d) by 2040.

Rice yields drop by more than 20% in certain states. In contrast, cassava yields may increase by

up to 15% in some southern areas, while others might see reductions over 10%. This divergence

is rooted in the distinct needs for temperature, humidity, wind, soil, and terrain among crops,

indicating that productivity changes result from factors beyond just a warming climate.

Figure 3 illustrates the diverse shifts in crop productivity across different regions. Our model

requires an estimate of the average potential productivity for each food type, denoted as µxℓ . As

outlined in section 4.4.1, and using the baseline productivity data, we determine the counterfactual

values for µxℓ . With equation (38), we calculate the log change in this potential productivity and

apply the equivalent variation formula from Equation (23).

Prior to examining the effects of productivity changes, we present the counterfactual measures

µxℓ for various food types and regions. Figure 4 illustrates the smoothed histogram of these varia-

tions, highlighting two notable observations. There is notable variability across states for a given

food type. The range of variation is around 40 percentage points: from -40% to 0% for HTC

and -20% to 20% for LTC. Additionally, the distribution for HTC items skews more leftward. On

average, the decline in productivity is more pronounced than that of LTC. Figure 5 illustrates the

geographic spread of these productivity shifts, in two maps.
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Figure 3: Percent Change in Yields, Optimistic Scenario, 2040

(a) Wetland Rice (b) Cassava

(c) Soybean (d) Beans

Notes: The maps illustrate the percentage shift in potential yield for Wetland Rice, Cassava, Soybean, and
Beans, represented in panels (a), (b), (c), and (d), respectively, by 2040 under the Optimistic scenario (RCP
2.6). The counterfactual yield is based on the average from five climate models, as described in section 6.2.
Though the heatmaps use similar color scales, they are not directly comparable; darker hues signify yield
reductions, while warmer hues indicate yield increases. In this analysis, rice and soybean are classified as
low-trade-cost foods, whereas beans and cassava fall into the high-trade-cost category.
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Figure 4: Log change in µxℓ across the states, Optimistic Scenario, 2040.

Notes: The figure shows the kernel density estimate for the log changes
in the expected productivity of the food sectors, indexed by x, across
the states. The change is given as equation (38), relative to the histori-
cal counterpart of the appropriate object.

6.2.2 Equivalent Variation

Upon obtaining the variations in average potential productivities, we apply the equivalent variation

formula, as in equation (23). For households residing in a specific location j, the trade shares

between states, πxj,ℓ, and alterations in average potential productivities, µ̂xℓ , remain constant. The

heterogeneity of outcomes within the region, due to productivity changes, is attributed to disparities

in the food expenditure share, sxi,j , with the lowest income deciles being relatively more exposed.

Figure 6a presents the findings for the lowest income decile across states, focusing on this

group due to its highest food expenditure share within each state. The central insight is related to

productivity changes illustrated in Figure 4. Since productivity shifts in HTC goods are predomi-

nantly negative, their impact is adverse. Conversely, LTC productivity changes are approximately

centered around zero. With minor trade costs, states engage more in LTC goods trading, making

them more susceptible to inter-state changes. As a result, LTC contributions are less significant

than HTC, and, for some states, even positive. We examine the impact of local productivity on the

results, especially noting that the primary influence appears to be the goods facing high trade costs.

Figure 7 depicts the relationship between the equivalent variation for the lowest income decile and
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Figure 5: Percent Change in Average Potential Productivity, µ̂xℓ , Optimistic Scenario, 2040

(a) LTC (b) HTC

Note: The maps present the percentage change in average potential yield, µxℓ , compared to historical data
for each state: panel (a) for LTC and panel (b) for HTC. This is projected for 2040 under the Optimistic
scenario, RCP 2.6. The counterfactual yields represent the average from five climate models, detailed in
section 6.2. Note that the heatmap color scales differ.

the variation in productivity for HTC food goods. For these goods, the trade costs are sufficiently

high that πxj,ℓ approaches zero when j ‰ ℓ. Consequently, in equation (23), HTC’s contribution

arises mainly from changes in productivity within the same region, resulting in the marked corre-

lation seen in figure 7.
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Figure 6: Equivalent Variation across the states, Optimistic Scenario, 2040

(a) First income decile

(b) Last income decile

Note: The figures illustrate the equivalent variation for the lowest income decile, in panel (a), and the
highest income decile, in panel (b). Green bars represent the HTC food goods contribution, whereas yellow
bars indicate the LTC contribution. States are arranged from left to right, from the most adverse to the least
adverse total change. Notice that, due to differences in the burden of subsistence ratio, per equation (36),
associated with the local food price, the ordering of the states is not the same in both figures.
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Figure 7: Equivalent Variation and change in HTC productivity

Notes: The figure displays a scatter plot illustrating the equivalent varia-
tion for the first decile in different states against changes in productivity
for HTC food goods. The x-axis is reversed, indicating a decrease in
productivity as one moves from left to right. Bubble size corresponds to
population shares.
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Figure 6b shows the counterpart of the equivalent variation for the highest-income decile. No-

tice that because of dispersion in the food price and in the income at the top of the distribution

across states, the ordering of the states is not the same as in Figure 6a.

6.3 Improving the Roads

Next, we proceed to the second counterfactual analysis, which emphasises the role of roads in

serving as a mitigation mechanism. We examine the structure applied to trade frictions, which

are modeled based on driving time between states. Better road quality decreases these frictions,

facilitating trade between locations. Consequently, reduced trade barriers enhance the adaptation

mechanism for sourcing food goods. In Table 1 and the related text, we briefly described driving

times between locations. Since the driving time between state capitals served as a proxy, the

discussion was concise. Given the importance of driving time in this counterfactual analysis, we

revisit the data.

Figure 8a presents a scatter plot illustrating driving distances (x-axis) versus driving times (y-

axis) from three Brazilian state capitals, as detailed in Table 1. Distances and times are recorded

in kilometers (km) and hours, respectively, with data points for each of the other 26 state capitals.

Manaus, marked by red circles, is relatively isolated in the Amazon, averaging more than 1,000

kilometers from the nearest three capitals and often over 3,000 kilometers from many others. In

contrast, Porto Alegre (green triangles) and São Paulo (blue squares) are closer to other capitals,

resulting in shorter driving times. A best-fit line is included, showing average speeds as distance

over time. For Manaus, this line is noticeably higher than those of Porto Alegre and São Paulo,

indicating greater distances and reduced average speeds, as evidenced in Table 1.

Figure 8b provides an alternative perspective on average speed heterogeneity. This illustration

includes the same three state capitals, but the y-axis now displays the average speed from each ori-

gin to all other state capitals. Notably, for Porto Alegre and São Paulo, the average speed remains

relatively stable across distances, centered around 75 km/h, with fluctuations from approximately

65 to 80 km/h. São Paulo, being more centrally located, has numerous state capitals within a 3,000

km radius. In contrast, Manaus exhibits a consistently lower average speed across the distance

range, with an observable increase in speed as the distance grows, highlighting low speeds near
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Manaus. This suggests that considering distance can overlook the additional travel cost in areas

with lower average speeds.

Figure 8: Alternative measures of driving frictions

(a) Driving Time, hours (b) Average Speed, km per hour

Notes: Two scatter plots are depicted, with Driving distance (km) on the horizontal axis versus two distinct
driving metrics. Panel (a) presents driving time in hours, and panel (b) illustrates average speed in km/h.
Each point represents data from one origin compared to all 26 Brazilian state capitals: Manaus (red,
circles), Porto Alegre (green, triangles), and São Paulo (blue, squares). These origins correspond to those
in Table 1.

Consider now our counterfactual scenario. Assume an increase in the average road speed by

φ%. Since the trade friction is a constant elasticity function of driving time, the reduction in trade

cost corresponds to this elasticity as follows:

B logpτxj,ℓq

B logpdi,jq
“ δx (39)

assuming j ‰ ℓ. Consequently, a rise in average speed by φ% results in a trade cost adjustment of

´φδx. This reduction in trade barriers decreases price levels at each location according to:

B logpP xj q

B logpτxj,ℓq
“ πxj,ℓ (40)

The equivalent variation is

EVi,j “
ÿ

xPX
sxi,j

ÿ

ℓ‰j

πxj,ℓδ
xφ

“
ÿ

xPX
sxi,jp1´πxj,jqδ

xφ (41)
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The initial row acknowledges τxj,j “ 1, while the final row considers that total trade shares equal

1. Equation (41) stresses the significance of the own-trade share, as discussed in Arkolakis et al.

(2012). With given expenditure shares sxi,j and elasticity δx, the own-trade share πxj,ℓ provides a

sufficient metric for calculating equivalent variation to first-order.

The first-order method offers a streamlined formulation to separate each type of food’s con-

tribution to the equivalent variation. Although the elasticity of trade friction to driving time for

high-trade-cost foods, δq, is double that for low-trade-cost foods, δc, typically the own-trade share

is larger for high-trade-cost foods. These opposing factors introduce variability in the policy im-

pacts.

Figure 9: Equivalent Variation from Road Improvement, first income decile,

Notes: The figure illustrates the equivalent variation for the lowest income decile
across states, following a 10% increase in average road speed post-climate change.
The green indicates HTC food goods’ impact, whereas the yellow represents LTC’s
contribution. States are arranged from left to right, from the worst to best total
change.

7 Discussion and Potential Extensions

In this section, we discuss key assumptions and potential extensions of the model. While our

framework focuses on the main forces of production and trade pattern shifts driven by new com-

parative advantages, it omits other adaptation margins, such as migration and the role of immobile
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factors like land and housing.

Migration. Significant differences in productivity changes across states suggest that households

might be less inclined to stay in regions likely to face reduced productivity, particularly if they are

remote. By constraining migration in our model, we may overstate the adverse effects on these

households. Barbosa-Alves and Britos (2023) highlights how financial frictions and declining pro-

ductivity prospects influence migration. Our approach aligns with the baseline model of Ramondo

et al. (2016), which excludes migration to focus on domestic trade frictions, a central element of

our analysis.

Although our model does not predict migration flows, the relative productivity changes and

their effects on utility across regions can indicate potential migration directions. For example, if a

state like Tocantins is expected to face declining productivity, residents may consider relocating.

The scale and economic impact of such migration is a quantitative question, and incorporating

migration into the model would be a valuable extension for future research.

Lower transportation costs could also encourage migration. Recent studies show how reduced

transport costs have spurred migration and enabled the exploration of new comparative advantages.

For Brazil, Morten and Oliveira (2024) documents how the transport network developed around

Brası́lia in the 1950s boosted both trade and internal migration. Similarly, Pellegrina and Sotelo

(2024) attributes the “March to the West” in Brazil during the late 20th and early 21st centuries

to improved road infrastructure, which arguably have lowered migration costs and shaped regional

productivity. In a way, this argument connects to Donaldson and Hornbeck (2016), where the

authors utilize the expansion of railroads in the late 19th-century United States as a means to

investigate the revaluation of land due to surge in new comparative advantages.

Immobile Factors. As shifts in comparative advantage drive migration, immobile factors such

as land and housing can limit these movements. For regions experiencing an outflow of residents,

land and housing would become relatively abundant, potentially leading to a decline in their prices.

This could deter further migration, as lower costs of living might encourage households to stay.

Donaldson and Hornbeck (2016) illustrates how reduced trade barriers, through railway expansion

in the late 19th century U.S., led to higher land values. A similar example is seen in Donaldson
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(2018).

Incorporating land as an explicit production factor could further enhance the ability to test the

goodness of fit of the model. This addition would allow for validation against land use patterns

observed in the data, as explored in studies like Costinot et al. (2016), Sotelo (2020), and Pellegrina

(2022). Our model implicitly assumes a Leontief production function between land and labor,

where land is relatively abundant, making labor the binding constraint on food production.

Other Considerations. The actual price of food also reflects processing costs beyond raw agri-

cultural products. Ignoring these costs may lead us to overstate the effects of declines in crop

productivity on overall food prices. Additionally, we classify foods as either low-trade-cost (LTC)

or high-trade-cost (HTC), but some goods, like animal products, may fall between these categories

due to transportation needs such as refrigeration. While these products are included in the LTC

group because of their classification as “tradables” by the Brazilian Central Bank, they may war-

rant separate analysis. Pellegrina (2022) finds that trade distance elasticities for cereals and “other

non-perishable” foods, including beef, are similar. Further refining the model to incorporate a

more detailed breakdown of consumer food costs would enhance our estimates.

8 Conclusion

In this paper, we developed a multi-location model of food production and trade to analyze the

effects of climate change on food prices and income inequality. The framework incorporates het-

erogeneity in food tradability, location-specific productivity, regional connectivity, and income

distribution within each location. We applied the model to Brazil, a country with significant ge-

ographical and climatic diversity, to examine how these factors interact to shape food prices and

household welfare under climate change.

The results indicate that trade frictions play a central role in limiting regional adaptation to

changes in local food productivity, particularly for goods with high trade costs. As climate change

alters agricultural productivity, the limited adaptability of high-trade-cost goods underscores the

importance of these trade frictions. This dynamic poses greater risks for poorer households, which

allocate a larger share of their income to food and are therefore more susceptible to price increases.
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Consequently, the uneven impacts of climate change on food prices have implications for existing

income inequalities within and across regions.

Our counterfactual analysis suggests that reducing trade frictions through improvements in

road infrastructure can serve as an adaptation strategy. Enhanced connectivity lowers trade costs,

enabling regions to source food more efficiently from more productive areas, which helps mit-

igate local price pressures. This, in turn, can dampen adverse welfare effects, particularly for

low-income households that are more exposed to food price increases. Although the findings are

specific to Brazil, the mechanisms and methods developed here can be applied to other regions

with similar vulnerabilities, such as India or parts of Africa, where climate change and transporta-

tion infrastructure constraints are also pertinent issues.

While the model emphasizes trade frictions, it abstracts from other adaptation strategies that

may also be significant. For example, migration between regions could serve as a response to

changes in local productivity. Although migration flows are not estimated, differences in cross-

state effects from the equivalent variation analysis offer insights into potential migration directions.

Barbosa-Alves and Britos (2023) discusses how local changes in agricultural productivity can in-

fluence migration. Another relevant consideration is the valuation of fixed factors, such as land and

housing. Extending the framework to include these factors could provide a more comprehensive

understanding of the adaptation mechanisms and is a potential area for future research.
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A Data

A.1 Exposure Data

Figure A.1 exhibits the temperature observed on a hypothetical day. The day starts at around 100C

and ends at around 140C. As the temperature rises, it eventually surpasses the threshold of 300C at

around 8 a.m. and remains above this threshold until approximately 4:30 p.m., so the total exposure

to 300C is 8.5{24 « 0.3541 day. The temperature remains above 350C between 10:30 a.m. and 2

p.m., so the exposure to 350C is 3.5{24 « 0.1458 day.

Figure A.1: Exposure to temperature thresholds
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Notes: The figure illustrates the exposure to different temperature cutoffs throughout a hypothetical day.

Our weather data is hourly. We compute the exposure to different temperature thresholds for

each municipality and month, combining the weather data and the official municipality boundaries

from IBGE for the year 2022. We then aggregate it at the quarterly frequency.

Since the CPI data is available at the location level that is unique for each state, the regression

uses the exposure measure at the state level. We first compute the exposure at the municipality
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level and then weigh each municipality within the state by the crop production value as follows

Heatℓ,t ”
ÿ

lPMℓ

Heatl,t ˆ w̃l,ℓ “
ÿ

lPMℓ

Heatl,t ˆ

¨

˚

˚

˚

˝

wl,ℓ
ÿ

lPMℓ

wl,ℓ

˛

‹

‹

‹

‚

(1)

where Mℓ is the set of all municipalities in state ℓ. The weight is wl,ℓ for municipality l at state ℓ,

and is given by

wl,ℓ “

2021
ÿ

y“1999

CPVl,y

22
(2)

where CPVl,y is the total crop production value. As we detail in Appendix A.2, the data for such

series comes at annual frequency, at crop and municipality level. The data starts in 1974 and

finishes in 2021. We use the data from 1999 to be lined up as much as possible with the CPI

coverage. Hence, wl,ℓ is the time average crop production value at the municipality l. This weight

is time-invariant throughout the sample.
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A.2 Crop Production Data

We use the Systematic Survey of Agricultural Production24 from IBGE as the main source for crop

production data. Our data comes in annual frequency and provides the value of production, planted

area, harvest area, quantity produced, and average yield at the level of crop and municipality. We

refer to appendix A.2 for a detailed list of crops that are covered.

The data covers the years 1974 to 2021. We use the production value data to weigh the obser-

vations (municipalities) around a reference city for the metro area when constructing the exposure

measure we use to run the regression in (32). Specifically, we first compute the exposure to a given

threshold of temperature for each municipality at the monthly frequency. Then, for each metro

area in our CPI data, we consider all cities that are within the state limits for that metro area. The

measure of exposure for each metro area is the weighted average of exposure of all municipalities

within the state boundaries, and the relative weight is given by the total (nominal) crop production

value, averaged from 1999 to 2021, to overlap with our CPI data coverage, as much as possible.

A.2.1 Link between Heat Exposure and Crop Yields

We use a long panel of data to examine the relationship between heat exposure and crop yields.

Our findings show that temperatures exceeding 300C tend to reduce crop yields, consistent with

Schlenker and Roberts (2009) based on U.S. data. We estimate this effect using a panel regression

where the dependent variable is yield, regressed on heat exposure at a specified cutoff, T . As in

the main text, we set T “ 300C. Heat exposure is measured during the crop season, defined from

September to May, which covers the most significant crops in terms of production value that share

a common or overlapping growing period.

logpyieldℓ,tq “ β0 ` βhHeatt,ℓ ` ΓXℓ,t `αℓ `αt ` ϵℓ,t (3)

Here, t represents time, and ℓ denotes location. The variable Heatt,ℓ measures exposure above

the temperature of 300C. We include location fixed effects to control for time-invariant, location-

specific factors, and time fixed effects to account for aggregate shocks. The vector Xt, ℓ comprises

additional controls for robustness checks, including state and regional trends, as well as interactions

24In Portuguese, “Levantamento Sistemático da Produção Agrı́cola”.
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of states and regions with years.

For brevity, we show three regressions here. The crops for these regressions are rice, soy-

bean, and beans. Rice and soybeans are classified as “tradable” in the Brazilian Central Bank

CPI classification, while beans are classified as “non-tradable”. Again, “tradable” refers to our

low-trade-cost, LTC, and “non-tradable” refers to our high-trade-cost, HTC. We ran one regres-

sion separately per crop to allow the fixed effect to control for crop-specific forces at locations

and aggregate effects. Alternatively, one could interact with each fixed effect with a crop dummy

together with the exposure variable.

The coefficient βh is a semi-elasticity. For example, one additional day of exposure above

300C during the crop season decreases the rice yield by 0.40% and the beans yield by 0.6%, after

controlling for state-year fixed effects.

Table A.1: Regression (3) results: Rice

Dependent variable: 100ˆ logpyieldt,ℓq

(1) (2) (3) (4) (5)

Heatt,ℓ -1.40˚˚˚ -1.37˚˚˚ -0.795˚˚˚ -1.41˚˚˚ -0.392˚˚˚

(0.0512) (0.0494) (0.0519) (0.0471) (0.0554)

Observations 154501 154501 154501 154501 154501
R-squared 0.172 0.185 0.273 0.198 0.376
Number of Municipalities 4837 4837 4837 4837 4837
Municipality FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Regional Trend ✓
Regional Dummy x Year ✓
State Trend ✓
State Dummy x Year ✓

Note: This table shows the results of regression (3), with several controls. Robust standard errors are in
parentheses. *** pă0.01, ** pă0.05, * pă0.1. All regressions include both Municipality and Year Fixed
Effects. The regression in Column (1) does not include any other controls. Column (2) adds the control
for the Regional Trend. Column (3) adds an interaction of a Regional Dummy with Year. Column (4) adds
a State Trend. Column (5) adds an interaction between a State Dummy and Year.
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Table A.2: Regression (3) results: Soybean

Dependent variable: 100ˆ logpyieldt,ℓq

(1) (2) (3) (4) (5)

Heatt,ℓ -0.951˚˚˚ -1.05˚˚˚ -0.891˚˚˚ -0.951˚˚˚ -0.599˚˚˚

(0.0345) (0.0362) (0.0382) (0.0365) (0.00037)

Observations 73240 73240 73240 73240 73240
R-squared 0.508 0.51 0.583 0.522 0.66
Number of Municipalities 2881 2881 2881 2881 2881
Municipality FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Regional Trend ✓
Regional Dummy x Year ✓
State Trend ✓
State Dummy x Year ✓

Note: This table shows the results of regression (3), with several controls. Robust standard errors are in
parentheses. *** pă0.01, ** pă0.05, * pă0.1. All regressions include both Municipality and Year Fixed
Effects. The regression in Column (1) does not include any other controls. Column (2) adds the control
for the Regional Trend. Column (3) adds an interaction of a Regional Dummy with Year. Column (4) adds
a State Trend. Column (5) adds an interaction between a State Dummy and Year.

Table A.3: Regression (3) results: Beans

Dependent variable: 100ˆ logpyieldt,ℓq

(1) (2) (3) (4) (5)

Heatt,ℓ -1.04˚˚˚ -0.895˚˚˚ -0.721˚˚˚ -0.941˚˚˚ -0.604˚˚˚

(0.0372) (0.0345) (0.0363) (0.0341) (0.0404)

Observations 207222 207222 207222 207222 207222
R-squared 0.172 0.217 0.269 0.24 0.371
Number of Municipalities 5522 5522 5522 5522 5522
Municipality FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Regional Trend ✓
Regional Dummy x Year ✓
State Trend ✓
State Dummy x Year ✓

Note: This table shows the results of regression (3), with several controls. Robust standard errors are in
parentheses. *** pă0.01, ** pă0.05, * pă0.1. All regressions include both Municipality and Year Fixed
Effects. The regression in Column (1) does not include any other controls. Column (2) adds the control
for the Regional Trend. Column (3) adds an interaction of a Regional Dummy with Year. Column (4) adds
a State Trend. Column (5) adds an interaction between a State Dummy and Year.
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A.3 CPI Data — Additional Details

A.3.1 Locations and Broad Baskets

Table A.4 reveals details for the locations we consider in the analysis. There are 16 locations in

the panel, most of which are metro areas. All the locations that are labeled as “municipality” are

the state capital. For each state, there is at most one location, but not all states are covered by the

CPI data, as figure A.2 shows. Out of 27 states, 16 are currently tracked in the CPI data, either by

its capital or the metroarea that include its capital.

The weight of each location when constructing the national index is highly variable, as the

column “Location” highlights. Locations with high total household income receive higher weights,

conditioning on income from 1 to 40 minimum wages. For example, the location of “São Paulo”

has the highest weight because it is the most populated state in Brazil and has a relatively high

household income25. These location weights are not used directly in our estimation.

The table shows the weight in the CPI basket for Food overall and breaks down these weights

into “Tradable” and “Nontradable” according to the Central Bank Classification exposed in A.4.

The range for the weight of Food in the basket is 26.6 percent to 16.8 percent.

The table also illuminates regional differences in the consumption basket. Locations with lower

weight are usually poorer and tend to have a relatively high expenditure share on Food. On the

other hand, locations with higher weights tend to consume a relatively larger share of Nontradable

food within the group “Food”. The reason is that the “Food” group contains subitems related to

services, such as eating out, which tend to be a relatively larger share of the expenditure as income

increases.

Figure A.2 brings a map of the state boundaries and the year when the locations associated

with each state became available in our sample. The sample we consider starts in 1999, and by

that year, there were already 11 locations in the CPI. In January 2014, Campo Grande (MS) and

Vitória (ES) became covered. In May 2018, Rio Branco (AC), São Luis (MA), and Aracaju (SE)

data became available.

25For brevity of the exposition, we omitted these two information from the table.
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Figure A.2: Locations for which the CPI data is available

Notes: The figure shows the state boundaries. The legend reads as the year in which the metro area or
capital city was introduced in the CPI panel. Many locations were introduced before 1999, so the map
reads as 1999 all the cities which were already available in that year. For locations in gold, the CPI
coverage started before 1999. For locations in light blue, the coverage started in 2014. For locations in
darker blue, the coverage started in 2018. Locations for which CPI data is unavailable are marked in gray.
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Table A.4: Locations for which CPI data is available

Weights (%)

Location Type State Acronym Location Food LTC Food HTC Food

Rio Branco Municipality Acre AC 0.5 23.3 12.8 10.4
Belém Metroarea Pará PA 3.9 26.6 15.9 10.7
São Luı́s Municipality Maranhão MA 3.5 25.5 16.3 9.2
Fortaleza Metroarea Ceará CE 3.2 23.9 13.0 10.9
Recife Metroarea Pernambuco PE 3.9 23.5 11.8 11.6
Aracaju Municipality Sergipe SE 1.0 21.7 10.9 10.8
Salvador Metroarea Bahia BA 6.0 22.4 11.7 10.7
Belo Horizonte Metroarea Minas Gerais MG 9.7 21.7 11.2 10.6
Vitória Metroarea Espı́rito Santo ES 1.9 17.4 9.3 8.1
Rio de Janeiro Metroarea Rio de Janeiro RJ 9.4 20.2 10.4 9.8
São Paulo Metroarea São Paulo SP 32.3 20.0 9.7 10.3
Curitiba Metroarea Paraná PR 8.1 20.9 11.7 9.2
Porto Alegre Metroarea Rio Grande do Sul RS 8.6 21.1 11.1 10.0
Campo Grande Metroarea Mato Grosso do Sul MS 1.6 21.5 11.9 9.6
Goiânia Municipality Goiás GO 4.2 20.5 11.1 9.4
Brası́lia Federal District Distrito Federal DF 4.1 16.8 7.1 9.7

Brazil Country - BR 100.0 21.0 10.9 10.1

Notes: The table shows every location we consider in the analysis. The location weights are the officially released
figures from the IBGE and were computed from the latest Consumer Expenditure Survey conducted in 2017 and 2018.
Location weights come from regional differences in household income. The weights for “Food”, LTC Food and HTC
Food refers to the data for December 2023. “LTC Food” is “tradable” food, while “HTC Food” is “nontradable” food,
according to the latest Central Bank Classification, as exposed in A.4. Occasional rounding errors occur.

A.3.2 Basket of Items Covered in the CPI

Within our sample coverage, the basket of nationally covered sub-items changed three times, so

there were baskets that were tracked. These changes happen mainly due to new information avail-

able from updated versions of Consumer Expenditure Survey (CES)26. The editions of the survey

post stabilization of hyperinflation took place in 1995-1996, 2002-2003, 2008-2009 and 2017-

2018.

At the beginning of our sample, in 1999, the reference CES was the version conducted in 1995-

1996. The CES version 2002-2003 was incorporated into the CPI basket in 2006. The next CES

version, 2008-2009, led to a change in the CPI basket in 2012. The latest CES, from 2017-2018,

was introduced to the CPI basket in 2020 and was current until the end of our sample.

26In Portuguese, Pesquisa de Orçamentos Familiares — POF
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A.3.3 Computing the Time Series of Price Changes

Let i be a sub-item (e.g., rice, bus fare, dress), ℓ be a location (e.g., São Paulo, Belo Horizonte, Rio

Branco), and t a month. The CPI data provides (i) a monthly weight associated with the sub-item

at that location, which we denote by wi,ℓ,t; and (ii) a monthly percent change in prices, which we

denote by πi,ℓ,t ”
pi,ℓ,t
pi,ℓ,t´1

´ 1.

The official data provides the inflation level and the weight for “Food and Beverages” for each

date t and location ℓ. Below, we explain how we construct the inflation measures for the baskets

of “Non-Food,” “Food Tradable”, and “Food Nontradable”.

Price Changes of an Arbitrary Basket We let the set of all sub-items be denoted by I . Each

sub-item is part of exactly one “item” Ik, forming a partition K

I ”
ď

kPK

Ik : Ik
č

k‰k1

Ik
1

“ tHu

Let Ik be an item (e.g., fruits, public transportation, women’s apparel), which is a set of similar

sub-items. Normalize, at the location and monthly level, the weight of each sub-item of Ik so that

they sum up to 1. The monthly price change for the item Ik at location ℓ at time t is equal to

πIk ,ℓ,t ”
ÿ

iPIk

πi,ℓ,t ˆ w̃i,ℓ,t ”
ÿ

iPIk

πi,ℓ,t ˆ
wi,ℓ,t

ÿ

iPIk

wi,ℓ,t
(4)

Let G be a group (e.g., Food and Beverages, Transportation, Apparel), which is a set a set of

similar items. Normalize, at the location and monthly level, the weight of each sub-item of Ik so

that they sum up to 1. The price change for a group G at location ℓ at time t is equal to

πG,ℓ,t ”
ÿ

iPG

πi,ℓ,t ˆ w̃i,ℓ,t ”
ÿ

iPG

πi,ℓ,t ˆ
wi,ℓ,t

ÿ

iPG

wi,ℓ,t
(5)

Constructing the Non-Food basket. Let Ft,ℓ denote the group of items that are classified as

“Food”. We then compute the inflation level for the basket of “Non-Food” sub-items by construct-
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ing a group NFt,ℓ as follows. First, we construct the group NFt,ℓ as

NFt,ℓ ” ti P I : i R Ft,ℓu (6)

πNF,ℓ,t ”
ÿ

iPNFℓ,t

πi,ℓ,t ˆ w̃i,ℓ,t ”
ÿ

iPNFℓ,t

πi,ℓ,t ˆ
wi,ℓ,t

ÿ

iPNFℓ,t

wi,ℓ,t
(7)

Constructing the Tradable and Nontradable Food baskets. We borrow from the Brazilian

Central Bank a classification of which items are classified as “Tradable” and which ones are Clas-

sified as “Non-Tradable”, which we use in particular for the group of “Food and Beverages”, which

we refer generically as “Food”27 The set of sub-items that are classified as “Food” form a partition

of items that are “Tradable” and “Nontradable”. Let T Fℓ,t be the set of tradable food sub-items at

location ℓ and time t. We let NTFℓ,t denote the set of nontradable food sub-items.

Fℓ,t ” T Fℓ,t
ď

NTFℓ,t such that T Fℓ,t
č

NTFℓ,t “ tHu (8)

The inflation of tradable food at location ℓ at date t is given

πT F,ℓ,t ”
ÿ

iPT Fℓ,t

πi,ℓ,t ˆ w̃i,ℓ,t ”
ÿ

T Fℓ,t

πi,ℓ,t ˆ
wi,ℓ,t

ÿ

iPT Fℓ,t

wi,ℓ,t
(9)

while for the nontradable food, we have

πNTF,ℓ,t ”
ÿ

iPNTFℓ,t

πi,ℓ,t ˆ w̃i,ℓ,t ”
ÿ

NTFℓ,t

πi,ℓ,t ˆ
wi,ℓ,t

ÿ

iPNTFℓ,t

wi,ℓ,t
(10)

Computing the Price Level of A Basket. Once we compute the series of inflation for each

basket B P tF,NF,T F,NT Fu, The time series for the price for that basket is computed as

pB,ℓ,t “ pB,ℓ,0

t
ź

τ“0

p1`πB,ℓ,τq (11)

27See Appendix A.4 for further detail on such classification.
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where we set pB,ℓ,0 “ 100 without loss of generality. Applying the natural logs and taking the

difference between period t` h and t´ 1, where h stands for the horizon, recovers the dependent

variable in the regressions we use throughout the main text.
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A.4 Brazilian Central Bank Classification for Goods and Services

Our CPI data come from IBGE. We would like to use a measure of the tradability of goods and

services. Since such a classification is not directly available from the IBGE, we rely on the classi-

fication developed by the Brazilian Central Bank (BCB).

The BCB uses data on import, export, and production to classify goods and services as “Trad-

able” and “Nontradable”. There is a third category called “Regulated”, for sub-items whose prices

are controlled by contracts by the competent government (such as bus fare, eletricity fee). These

three categories form a partition. Methodological notes with updates to this classification were last

posted on Brazilian Central Bank (2019).

We use this classification exclusively for Food goods and services28. In such group, there are

not “regulated” sub-items, so the goods and services are either classificied as tradable or non-

tradable.

Within our sample, there were four versions of the Consumer Expenditure Survey (see, for

further details, A.3). For each of these versions, the IBGE defines a national basket of goods and

services whose prices will be tracked. The basket of goods actually tracked at each location is a

subset of this national basket and depends on regional differences in the consumption habits.

28In Portuguese, “Alimentação e Bebidas”.
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A.5 Matching Crops from IBGE and GAEZ

In this appendix, we list all crops that are matched from the GAEZ dataset and the IBGE crop

production data.

Table A.5: Crops matched between GAEZ and the IBGE

Crop Name GAEZ Acronym Tradability Actvitity Labor Intensity

Banana bana HTC Fruits 149
Barley barl LTC Cereals 82
Beans bean HTC Other seasonal crops 165
Cacao coco HTC Cacao 101
Cassava casv HTC Other seasonal crops 165
Citrus citr HTC Organge 107
Coconut cocn HTC Fruits 149
Coffee coff LTC Coffee 157
Corn maiz LTC Cereals 82
Cotton cott LTC Cotton 14
Cowpea cowp HTC Other seasonal crops 165
Dry peas dpea HTC Vegetables and Legumes 304
Flax fibre flax LTC Oilseeds 169
Groundnut grnd LTC Other seasonal crops 165
Oat oats LTC Cereals 82
Oil palm oilp LTC Other permanent crops 110
Olive oliv LTC Other permanent crops 110
Onion onio HTC Other seasonal crops 165
Rye ryes LTC Cereals 82
Sorghum bsrg LTC Cereals 82
Soybean soyb LTC Soybean 13
Sugar Cane sugc LTC Sugarcane 45
Sunflower sunf LTC Oilseeds 169
Sweet Potato spot HTC Other seasonal crops 165
Tea teas LTC Other permanent crops 110
Tomato toma HTC Vegetables and Legumes 304
Wetland rice ricw LTC Cereals 82
Wheat whea LTC Cereals 82
White Potato wpot HTC Other seasonal crops 165

Notes: Labor intensity is measured as the number of workers per 1,000 hectares, rounded to the nearest
whole number. Since labor intensity data is not directly available for each crop, we assign the value
from the closest corresponding group whenever necessary. “Activity” is the group defined in the 2017
agricultural census conducted in Brazil. These groups are: “Cereals,” “Fruits,” “Oilseeds,” “Other Seasonal
Crops,” “Other Permanent Crops,” and “Vegetables and Legumes.” The “Fruits” category excludes oranges
and grapes, while “Oilseeds” excludes soybeans.

These crops correspond to around 90% of total crop production value for the years between

2002 and 2022. The corresponding metric for the share of total land used for crops is even higher,

around 95%.
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A.6 Construction of µxℓ and T xℓ

In the main text, we show that the Frechet draws for the productivity imply a link between the State

of Technology parameter T xℓ , and the average (or expected) potential productivity, µxℓ . In the text,

this relationship appears in Equation (17), which we reproduce here

T xℓ “

”

µxℓ

ıθx

κx

In order to recover a measure of average productivity in a way that makes sense in our model,

we perform the two adjustments: converting from land to labor productivity and standardizing the

units — so we can take an average. The formula to recovering µxℓ is

µxℓ “
1
N x

ÿ

ω

Zxℓ pωqνpωqppωq (12)

whereN x is the number of goods of type x in the Table A.5, Zxℓ pωq is the productivity of cropω in

location ℓ, measured in Kg/Ha, νpωq is the input requirement, measured in Wokers/Ha, and ppωq,

is the price in local currency/Kg. The resulting unit is a measure of local currency per worker.

Notice that νpωq is given by the inverse of labor intensity in Table A.5. This is important since

a low input requirement means that the crop is relatively intense in land — soybean is a prominent

example. In this case, by construction in equation (12), the relatively more land-intense crops

receive a relatively high weight.

Observe that both the input requirement, νpωq, and the price, ppωq, do not take the index

ℓ. Both are based on the national average. The reason is that both conventions are done so that

average is sensitive and the final measure corresponds to labor productivity. Using local prices or

local input requirements might contaminate the averaging with the connectedness of each location

— e.g., the price of a good in a relatively isolated place would be higher, but this would reflect

trade costs rather than higher productivity.

Once the measure of µxℓ , we construct the variable T xℓ . The constant κx is absorbed into a

normalizing scale: all we need is the relative value of T xℓ to construct πxj,ℓ, as this variable is

homogeneous of degree zero in the vector rT xℓ s, as shown in Equation (15).
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Figure A.3: Measures for the historical µxℓ for LTC and HTC food goods.

(a) LTC: µcℓ

(b) HTC: µqℓ

Notes: Panel (a) displays the relative average potential productivity of each state for LTC (low-temperature
crop) food goods, while panel (b) shows the corresponding values for HTC (high-temperature crop) food
goods. In both panels, productivity levels are expressed relative to the state of São Paulo, which is set to
100 for reference. Each bar represents the productivity value for a given state, with states arranged on the
horizontal axis in increasing order from left to right.
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Figure A.4: Spatial correlation for µxℓ for LTC and HTC food goods.

(a) LTC: µcℓ

(b) HTC: µqℓ

Notes: Panel (a) exhibits the relative average potential productivity of each state for the LTC food goods,
while panel (b) exhibits the analogue for the HTC food goods. Both measures are relative to the level of
the state of São Paulo, which is normalized to 100. The color scale for each location is comparable.

Results for µxℓ .
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A.7 Construction of the Relative Wages

In the construction of the trade shares, as in Equation 15, we need a measure of the wages costs in

each location. For that, we took the average wage for all occupations from Continuous National

Household Sample Survey (PNAD Contı́nua, in Portuguese).

The trade share is homogeneous of degree 0 in the vector of wages. Hence, similar to the case

of recovering µxℓ and T xℓ , we choose one state as a reference and normalize the average wage to the

level observed in the State of São Paulo. Since the series started in 2012, we took an average over

time, otherwise we would lose more than half of the CPI sample that we use to run the regression

Equation 32. The CPI data in our sample starts in 1999.

In the model, πxj,ℓ fluctuates because of fluctuations in w̃xℓ . Hence, taking the average over time

for the relative wage level in each state renders the trade share constant. The resulting average

wage is shown below, in figure A.5.
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Figure A.5: Relative wage costs

(a) Ordered Wages

(b) Spatial Dispersion

Notes: Panel (a) exhibits the relative wage of each state, ordered from left to right; Panel (b) exhibits the
same information in a map, highlighting the spatial dispersion of wages.
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A.8 Counterfactual Measures of µxℓ

Relative to the baseline, the key change in the construction of the counterfactual µxℓ , denoted by

µx1
ℓ , is the new draws in Zxℓ pωq, which we denote by Zxℓ pωq1.

Applying the formula in Equation (12), we have the following:

µx1
ℓ “

1
N x

ÿ

ω

Zx1
ℓ pωqνpωqppωq (13)

Letting gxℓ pωq be the net growth rate of land productivity for variety px,ωq in location ℓ, we have

by construction:

Zx1
ℓ pωq “ Zxℓ p1` gxℓ pωqq (14)

Hence, we can rewrite the rate of change in µxℓ as

µx1
ℓ ´µxℓ
µxℓ

“
ÿ

ω

µ̃xℓpωqgxℓ pωq (15)

where

µ̃xℓ ”
Zxℓ pωqνpωqppωq

ÿ

ω

Zxℓ pωqνpωqppωq
(16)

gives the of contribution of good ω into µxℓ . Up to a first-order approximation, provided that gxℓ pωq

logpµx1
ℓ q ´ logpµxℓq “ log

´µx1
ℓ

µxℓ

¯

«
µx1
ℓ ´µxℓ
µxℓ

“
ÿ

ω

µ̃xℓpωqgxℓ pωq (17)

Therefore, up to a first-order approximation the proportional change in the average potential pro-

ductivity can be decomposed into a weighted average of growth rate of each crops’ productivity,

gxℓ pωq and the weights are given by the pre-change contributions toward µxℓ , that is, µ̃xℓpωq.
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B Model: Derivations

In this appendix, we provided a detailed derivation of the results for the main model.

B.1 Ideal Price Index

From the nested-CES structure of the utility, the ideal price index for each good type at location

ℓ P L

P cℓ “

ˆ
ż 1

0
pcℓpωq

1´νdω

˙

1
1´ν

and P
q
ℓ “

ˆ
ż 1

0
p
q
ℓ pωq

1´νdω

˙

1
1´ν

We will use this expressions later on in the derivation.

B.2 Prices

Let the adjusted bundle cost of inputs at location ℓ P L and good type x be

w̃xℓ ”
wℓ
Gxpsq

The cost of location faced by location j if it were to buy variety ω from location ℓ is given by

pxj,ℓpωq “
w̃xℓ

Z̃xℓ pωq
τxj,ℓ

where τxj,ℓ is trade cost of good type x from location ℓ to j and Z̃xℓ pωq is the productivity of

location ℓ to produce variety ω of good type x, which we label as “EK term” in (24). These EK

productivities are independently drawn across locations, varieties, and types from a location-type

specific Fréchet Distribution, as in (9):

Fxℓ pz̃q “ e´T xℓ z̃
´θx

.
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The probability that location ℓ can supply variety ω of type x to location j at a price at most p is

given by

Gxj,ℓppq ” Pr
!

pxj,ℓpωq ď p
)

“ Pr

#

w̃xℓ
Z̃xℓ pωq

τxj,ℓ ď p

+

“ Pr
"

w̃xℓ
p
τxj,ℓ ď Z̃xℓ pωq

*

“ 1´Pr
"

Z̃xℓ pωq ď
w̃xℓ
p
τxj,ℓ

*

“ 1´Fxℓ

ˆ

w̃xℓ
p
τxj,ℓ

˙

“ 1´ exp
"

´T xℓ

´

w̃xℓτ
x
j,ℓ

¯´θ
pθ

*

(18)

Location j buys from the lowest-cost supplier. The probability of location j pays at most p for

the type-variety pair px,ωq is given by

Gxj ppq ” Pr
"

min
ℓPL

pxj,ℓpωq ď p

*

“ 1´Pr
"

min
ℓPL

pxj,ℓpωq ě p

*

“ 1´Pr

#

č

ℓPL

´

pxj,ℓpωq ě p
¯

+

“ 1´
ź

ℓPL

´

1´Gxj,ℓppq

¯

(19)

Using (18) into (19)

Gxj ppq “ 1´
ź

ℓPL
exp

"

´T xℓ

´

w̃xℓτ
x
j,ℓ

¯´θ
pθ

*

“ 1´ exp

#

pθ
ÿ

ℓPL
´T xℓ

´

w̃xℓτ
x
j,ℓ

¯´θ
+

“ 1´ exp
!

´pθΦx
j

)

(20)
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where

Φx
j ”

ÿ

ℓPL
T xℓ

´

w̃xℓτ
x
j,ℓ

¯´θ

The ideal price index for location good type x is given by at location j solves

´

P xj

¯1´ν
”

ż 1

0
pxℓ pωq

1´νdω

“

ż 8

0
p1´νdGxj ppq

“

ż 8

0
p1´ν

ˆ

d
dp

p1´ exp
!

´pθΦx
j

)

˙

dp

“

ż 8

0
p1´νθpθ´1Φx

j exp
!

´pθΦx
j

)

dp

“ θΦx
j

ż 8

0
pθ´ν exp

!

´pθΦx
j

)

dp

”

ż 8

0

˜

y

Φx
j

¸
1´ν
θ

expt´yudy

“

´

Φx
j

¯´ 1´ν
θ

ż 8

0
y

1´ν
θ expt´yudy

“

´

Φx
j

¯´ 1´ν
θ

Γ

ˆ

θ` 1´ ν
θ

˙

”

´

Φx
j

¯´ 1´ν
θ
γ (21)

where we used, in the sixth row, the change of variable y ” pθΦx
j , which implies dy “ θpθ´1Φx

j dp.

The Gamma function that appears in the eighth row is given by Γ ptq ”
ş8

0 y
t´1 expt´yudy, for

t ą 1. We let

γ ” Γ

ˆ

θ` 1´ ν
θ

˙

The price index P xj is then given by

P xj “

´

Φx
j

¯´ 1
θ
γ

1
1´ν

”

˜

ÿ

ℓPL
T xℓ

´

w̃xℓτ
x
j,ℓ

¯´θ
¸´ 1

θ

γ̄ (22)

75



where we let γ̄ ” γ
1

1´ν

B.3 Trade Flows

The trade flows expressions are standard expressions in the Eaton and Kortum (2002) framework.

Below we show a detailed derivation. There is a continuum of varieties of each type, and the

productivity draws are independent across varieties, types and locations. This implies that the

probability a location j P L buys a variety ω P r0,1s of type x P tc,qu is equal to the proportion of

goods of this type that location j P L will buy from ℓ P L. We denote this trade share by πxj,ℓ.

To find out this share, let us start with the probability that j P L buys ω P r0,1s from ℓ P L. In

what follows, let L´ℓ ” tj P L : j ‰ ℓu, the set of all locations but ℓ.

πxj,ℓ ” Pr
"

pxj,ℓpωq ď min
kPL´ℓ

pxj,kpωq

*

“

ż 8

o
Pr

"

min
kPL´ℓ

pxj,kpωq ě p

*

dGxj,ℓppq

“

ż 8

o
Pr

$

&

%

č

kPL´ℓ

´

pxj,kpωq ě p
¯

,

.

-

dGxj,ℓppq

“

ż 8

o

»

–

ź

kPL´ℓ

p1´Gxj,kppqq

fi

fldGxj,ℓppq

“

ż 8

0

»

–

ź

kPL´ℓ

˜

exp

#

´T xk

ˆ

w̃xkτj,k
p

˙´θ
+¸

fi

fldGxj,ℓppq

“

ż 8

0

»

–exp

$

&

%

pθ
ÿ

kPL´ℓ

´T xk

´

w̃xkτ
x
j,k

¯´θ

,

.

-

fi

fldGxj,ℓppq

“

ż 8

0

»

–exp

$

&

%

pθ
ÿ

kPL´ℓ

´T xk

´

w̃xkτ
x
j,k

¯´θ

,

.

-

fi

fl

˜

d
dp

˜

1´ exp

#

´T xℓ

ˆ

w̃xℓτj,ℓ
p

˙´θ
+¸¸

dp
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Now, using equation (18), we get

πxj,ℓ ”

ż 8

0

»

–exp

$

&

%

pθ
ÿ

kPL´ℓ

´T xk

´

w̃xkτ
x
j,k

¯´θ

,

.

-

fi

flT xℓ
`

w̃xℓτj,ℓ
˘´θ

θpθ´1 exp
!

´T xℓ
`

w̃xℓτj,ℓ
˘´θ

pθ
)

dp

“ T xℓ
`

w̃xℓτj,ℓ
˘´θ

ż 8

0
θpθ´1 exp

!

´pθΦx
j

)

dp

“ T xℓ
`

w̃xℓτj,ℓ
˘´θ Φ

x
j

Φx
j

ż 8

0
θpθ´1 exp

!

´pθΦx
j

)

dp

“
T xℓ

`

w̃xℓτj,ℓ
˘´θ

Φx
j

ż 8

0
θpθ´1Φx

j exp
!

´pθΦx
j

)

dp

“
T xℓ

`

w̃xℓτj,ℓ
˘´θ

Φx
j

”

´exp
!

´pθΦx
j

)ı8

p“0

“
T xℓ

`

w̃xℓτj,ℓ
˘´θ

Φx
j

(23)

B.4 Indirect Utility

Under the assumption of the Stone-Geary utility function, the indirect utility is given by

U pcoi,j , c
f
i,jq “ p1´αf q logpcoi,jq `αf logpc

f
i,j ´ cf q (24)

The outside good is a numeraire, the price of food is P fj and the income is yi,j . Thus, the demand

for each good is

Coi,j “ p1´αf qpyi,j ´ cf P
f
j q (25)

Cfi,j “ cf `αf
pyi,j ´ cf P

f
j q

P
f
j

(26)

Hence, the food expenditure share is given by

s
f
i,j ”

Cfi,jP
f
j

yi,j
“ αf ` p1´αf qψ

f
i,j (27)
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where ψfi,j is the subsistence ratio, the share of income that is needed to pay for the minimum food

consumption:

ψ
f
i,j ”

cf P
f
j

yi,j
(28)

Plugging the demand for each good into the utility, we recover the indirect utility function:

Vi,j ” V pyi,j , P
f
j q “ p1´αf q logp1´αf q `αf logpαf q

looooooooooooooooooooomooooooooooooooooooooon

”α̃

` logpyi,j ´ cf P
f
j q ´αf logpP

f
j q (29)

We write

Vi,j “ α̃` logpyi,j ´ cf P
f
j q ´αf logpP

f
j q (30)

B.4.1 Effect of Increasing Food Prices

The derivative of the indirect function with respect to the food prices is given by

BVi,j
BP

f
j

“
´cf

yi,j ´ cf P
f
j

´αf
1

P
f
j

“
´cf

yi,j ´ cf P
f
j

P
f
j

P
f
j

´αf
1

P
f
j

“ ´
1

P
f
j

¨

˝

cf P
f
j

yi,j ´ cf P
f
j

`αf

˛

‚

“ ´
1

P
f
j

¨

˝

ψ
f
i,jyi,j

yi,j ´ψ
f
i,jyi,j

`αf

˛

‚

“ ´
1

P
f
j

¨

˝

ψ
f
i,j

1´ψ
f
i,j

`αf

˛

‚

“ ´
1

P
f
j

¨

˝

αf `ψ
f
i,jp1´αf q

1´ψ
f
i,j

˛

‚
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This derivative is more negative: increasing food prices decreases the indirect utility ceteris paribus.

This derivative also gets more negative as ψfi,j increases.

B.4.2 Exact Income Compensation

Suppose that the price of food change proportionally by a factor g:

P
f 1

j “ P
f
j p1` gq (31)

The goal of this section is to derive by which factor income ei,j needs to change to achieve the

same level of utility, at the initial prices. That is, ei,j that solves the following equation:

V pyi,jp1` ei,jq, P
f
j q “ V pyi,j , P

f
j p1` gqq (32)

The equality requires

logpyi,jp1` ei,jq ´ cf P
f
j q ´αf logpP

f
j q “ logpyi,j ´ cf P

f
j p1` gqq ´αf logpP

f
j p1` gqq (33)

Now, using the fact that

cf P
f
j “ ψ

f
i,jyi,j (34)

and that

cf P
f 1

j “ cf P
f
j p1` gq (35)

“ ψ
f
i,jyi,jp1` gq (36)

we have that

logpyi,jp1` ei,jq ´ψ
f
i,jyi,jq ´αf logpP

f
j q “ logpyi,j ´ψ

f
i,jyi,jp1` gqq ´αf logpP

f
j p1` gqq (37)

implying

pyi,jp1` ei,jq ´ψ
f
i,jyi,jq “ pyi,j ´ψ

f
i,jyi,jp1` gqqp1` gq

´αf (38)
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or

p1` ei,jq ´ψ
f
i,j “ p1´ψ

f
i,jp1` gqqp1` gq

´αf (39)

or

ei,j “ ψ
f
i,j ` p1´ψ

f
i,jp1` gqqp1` gq

´αf
´ 1 (40)

or

ei,j “ ψ
f
i,j ` pp1` gq

´αf
´ 1q ´ψ

f
i,jp1` gq

1´αf (41)

so let us write

Ei,jpψ
f
i,j , gq ” ei,j “ ψ

f
i,j ` pp1` gq

´αf
´ 1q ´ψ

f
i,jp1` gq

1´αf (42)

Some properties of this function Ei,j are

a) Ei,jpψ
f
i,j ,0q “ 0

b) Decreasing in g

c) Decreasing in ψfi,j if g ą 0, and increasing in ψfi,j if g ă 0

d) Convex in g

Property (a) follows by construction.

For Property (b), observe that

BEi,j
Bg

“ ´αf p1` gq
´α´1

´ψ
f
i,jp1´αqp1` gq

´αf
ă 0 (43)

Property (a) + (b) imply that households would be willing to pay not to face higher prices. This

is rather mechanical: the indirect utility is increasing in income and decreasing in prices.

For property (c), observe that

BEi,j
Bψ

f
i,j

“ 1´ p1` gq
1´αf (44)
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When g “ 0, this derivative evaluates as 0. Now, using the fact that

BEi,j
Bg

BEi,j
Bψ

f
i,j

“ ´p1´αf qp1` gq
´αf

ă 0 (45)

we see that Ei,j is increasing in ψfi,j if g is negative and decreasing in g if positive.

Finally, for property (d), observe that the second derivative of Ei,j with respect to g is positive:

B2Ei,j
Bg2

“ αf p1´αf qp1` gq
´α´1

”

p1` gq
´1

`ψ
f
i,j

ı

ą 0 (46)

B.4.3 Exact Growth Rate in Food Prices

Owing to the Cobb-Douglas structure of the composite for the two goods, the price of the food

basket is given by

P
f
ℓ “

ˆ

P cℓ
αc

˙αc
˜

P
q
ℓ

αq

¸αq

(47)

Let g be the (net) growth rate of price of food, gc and gq their analogue for the LTC and the HTC.

Hence, the final price is given by

P
f
ℓ p1` gq “

ˆ

P cℓ p1` gcq

αc

˙αc
˜

P
q
ℓ p1` gqq

αq

¸αq

(48)

or

P
f
ℓ p1` gq “

ˆ

P cℓ
αc

˙αc

p1` gcqα
c

˜

P
q
ℓ

αq

¸αq

p1` gqqα
q

(49)

or

p1` gq “ p1` gcqα
c
p1` gqqα

q
(50)

Using a log approximation, the growth rate g can be written as a weighted average of the changes

gc and gq

g « αcgc `αqgq (51)

The approximation is good with the growth rates pgc, gqq are small, but performance deteriorates

for large changes - positive or negative. In our results, the changes in prices are large. The under-
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lying reason is that the changes in potential productivity, captured by µxℓ are substantial.
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